Separating $k$-Player from $t$-Player One-Way Communication, with Applications to Data Streams
by Elbert Du, Michael Mitzenmacher, David Woodruff, and Guang Yang
Theory of Computing, Volume 19(10), pp. 1-44, 2023
Bibliography with links to cited articles
[1] Farid Ablayev: Lower bounds for one-way probabilistic communication complexity and their application to space complexity. Theoret. Comput. Sci., 157(2):139–159, 1996. [doi:10.1016/0304-3975(95)00157-3]
[2] Yuqing Ai, Wei Hu, Yi Li, and David P. Woodruff: New characterizations in turnstile streams with applications. In Proc. 31st Comput. Complexity Conf. (CCC’16), pp. 20:1–22. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016. ACM DL.
[3] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar: An information statistics approach to data stream and communication complexity. J. Comput. System Sci., 68(4):702–732, 2004. [doi:10.1016/j.jcss.2003.11.006]
[4] Paul Beame, Toniann Pitassi, Nathan Segerlind, and Avi Wigderson: A direct sum theorem for corruption and the multiparty NOF communication complexity of set disjointness. In Proc. 20th IEEE Conf. on Comput. Complexity (CCC’05), pp. 52–66. IEEE Comp. Soc., 2005. [doi:10.1109/CCC.2005.1]
[5] Mark Braverman and Ankit Garg: Public vs private coin in bounded-round information. In Proc. 41st Internat. Colloq. on Automata, Languages, and Programming (ICALP’14), pp. 502–513. Springer, 2014. [doi:10.1007/978-3-662-43948-7_42]
[6] Joshua Brody, Harry Buhrman, Michal Koucký, Bruno Loff, Florian Speelman, and Nikolay K. Vereshchagin: Towards a reverse newman’s theorem in interactive information complexity. Algorithmica, 76(3):749–781, 2016. Preliminary version in CCC’13. [doi:10.1007/s00453-015-0112-9]
[7] Amit Chakrabarti, Yaoyun Shi, Anthony Wirth, and Andrew Chi-Chih Yao: Informational complexity and the direct sum problem for simultaneous message complexity. In Proc. 42nd FOCS, pp. 270–278. IEEE Comp. Soc., 2001. [doi:10.1109/SFCS.2001.959901]
[8] Graham Cormode, Mayur Datar, Piotr Indyk, and S. Muthukrishnan: Comparing data streams using Hamming norms (how to zero in). IEEE Trans. Knowledge Data Engr., 15(3):529–540, 2003. [doi:10.1109/TKDE.2003.1198388]
[9] AndrĂ© Gronemeier: Asymptotically optimal lower bounds on the NIH-multi-party information complexity of the AND-function and Disjointness. In Proc. 26th Symp. Theoret. Aspects of Comp. Sci. (STACS’09), pp. 505–516. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2009. [doi:10.4230/LIPIcs.STACS.2009.1846, arXiv:0902.1609]
[10] Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian: Learning-based frequency estimation algorithms. In Int. Conf. Learning Representations (ICLR’19). ICLR, 2019. OpenReview.
[11] Piotr Indyk: Stable distributions, pseudorandom generators, embeddings, and data stream computation. J. ACM, 53(3):307–323, 2006. [doi:10.1145/1147954.1147955]
[12] T. S. Jayram: Hellinger strikes back: A note on the multi-party information complexity of AND. In Proc. 13th Internat. Workshop on Randomization and Computation (RANDOM’09), pp. 562–573. Springer, 2009. [doi:10.1007/978-3-642-03685-9_42]
[13] Tanqiu Jiang, Yi Li, Honghao Lin, Yisong Ruan, and David P. Woodruff: Learning-augmented data stream algorithms. In Int. Conf. Learning Representations (ICLR’20). ICLR, 2020. OpenReview.
[14] Daniel M. Kane, Jelani Nelson, Ely Porat, and David P. Woodruff: Fast moment estimation in data streams in optimal space. In Proc. 43rd STOC, pp. 745–754. ACM Press, 2011. [doi:10.1145/1993636.1993735, arXiv:1007.4191]
[15] Daniel M. Kane, Jelani Nelson, and David P. Woodruff: On the exact space complexity of sketching and streaming small norms. In Proc. 21st Ann. ACM–SIAM Symp. on Discrete Algorithms (SODA’10), pp. 1161–1178. SIAM, 2010. ACM DL.
[16] Daniel M. Kane, Jelani Nelson, and David P. Woodruff: An optimal algorithm for the distinct elements problem. In Proc. 29th Symp. on Principles of Database Systems (PODS’10), pp. 41–52. ACM Press, 2010. [doi:10.1145/1807085.1807094]
[17] Ilan Kremer, Noam Nisan, and Dana Ron: On randomized one-round communication complexity. Comput. Complexity, 8(1):21–49, 1999. Errata (2001). [doi:10.1007/s000370050018]
[18] Eyal Kushilevitz: Communication complexity. Adv. in Computers, 44:331–360, 1997. [doi:10.1016/S0065-2458(08)60342-3]
[19] Thodoris Lykouris and Sergei Vassilvitskii: Competitive caching with machine learned advice. J. ACM, 68(4):24:1–25, 2021. Preliminary version in PMLR 2018. [doi:10.1145/3447579, arXiv:1802.05399]
[20] Michael Mitzenmacher: Scheduling with predictions and the price of misprediction. In Proc. 11th Innovations in Theoret. Comp. Sci. Conf. (ITCS’20), pp. 14:1–18. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2020. [doi:10.4230/LIPICS.ITCS.2020.14]
[21] Michael Mitzenmacher and Sergei Vassilvitskii: Algorithms with predictions. In Tim Roughgarden, editor, Beyond the Worst-Case Analysis of Algorithms, pp. 646–662. Cambridge Univ. Press, 2020. [doi:10.1017/9781108637435.037]
[22] Christos H. Papadimitriou and Michael Sipser: Communication complexity. J. Comput. System Sci., 28(2):260–269, 1984. Preliminary version in STOC’82. [doi:10.1016/0022-0000(84)90069-2]
[23] Emanuele Viola: The communication complexity of addition. Combinatorica, 35(6):703–747, 2015. Preliminary version in SODA’13. [doi:10.1007/s00493-014-3078-3]
[24] David P. Woodruff and Guang Yang: Separating k-player from t-player one-way communication, with applications to data streams. In Proc. 46th Internat. Colloq. on Automata, Languages, and Programming (ICALP’19), pp. 1–14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019. [doi:10.4230/LIPIcs.ICALP.2019.97]
[25] David P. Woodruff and Qin Zhang: Tight bounds for distributed functional monitoring. In Proc. 44th STOC, pp. 941–960. ACM Press, 2012. [doi:10.1145/2213977.2214063]