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Abstract. The Polynomial Identity Lemma (also called the “Schwartz–Zippel

lemma”) states that any nonzero polynomial 5 (G1 , . . . , G=) of degree at most B will

evaluate to a nonzero value at some point on any grid (= ⊆ F = with |( | > B. Thus,

there is an explicit hitting set for all =-variate degree-B, size-B algebraic circuits of
size (B + 1)= .

In this paper, we prove the following results:
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• Let & > 0 be a constant. For a sufficiently large constant =, and all B > =, if we

have an explicit hitting set of size (B + 1)=−& for the class of =-variate degree-B
polynomials that are computable by algebraic circuits of size B, then for all large

B, we have an explicit hitting set of size Bexp(exp($(log
∗ B)))

for B-variate circuits of

degree B and size B.

That is, if we can obtain a barely non-trivial exponent (a factor-BΩ(1) improve-

ment) compared to the trivial (B + 1)=-size hitting set even for constant-variate

circuits, we can get an almost complete derandomization of PIT.

• The above result holds when “circuits” are replaced by “formulas” or “algebraic

branching programs.”

This extends a recent surprising result of Agrawal, Ghosh and Saxena (STOC

2018, PNAS 2019) who proved the same conclusion for the class of algebraic circuits,

if the hypothesis provided a hitting set of size at most

(
B=

0.5−�
)
(where � > 0 is any

constant). Hence, our work significantly weakens the hypothesis of Agrawal, Ghosh

and Saxena to only require a slightly non-trivial saving over the trivial hitting set,

and also presents the first such result for algebraic formulas.

1 Introduction

Multivariate polynomials are the primary protagonists in the field of algebraic complexity and

algebraic circuits form a natural robust model of computation for multivariate polynomials. For

completeness, we now define algebraic circuits : an algebraic circuit is a directed acyclic graph

with internal gates labeled by + (addition) and × (multiplication), and with leaves labeled by

either variables or field constants; computation flows in the natural way.

In the field of algebraic complexity, much of the focus has been restricted to studying

=-variate polynomials whose degree is bounded by a polynomial function in =, and such

polynomials are called low-degree polynomials. This restriction has several a priori and a posteriori
motivations, and excellent discussions of this can be seen in the thesis of Forbes [12, Section 3.2]

and Grochow’s answer [13] on cstheory.SE. The central question in algebraic complexity is

to find a family of low-degree polynomials that requires large algebraic circuits to compute it.

Despite having made substantial progress in various subclasses of algebraic circuits (see, e. g.,

the surveys [30, 26]), the current best lower bound for general algebraic circuits is merely an

Ω(= log 3) lower bound of Baur and Strassen [5].

An interesting approach towards proving lower bounds for algebraic circuits is via showing

good upper bounds for the algorithmic task of polynomial identity testing. Our results in this paper

deal with this problem, and we elaborate on this now.
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1.1 Polynomial Identity Testing

Polynomial identity testing (PIT1) is the algorithmic task of checking if a given algebraic circuit

� of size B computes the identically zero polynomial. As discussed earlier, although a circuit of

size B can compute a polynomial of degree 2
B
, this question typically deals only with circuits

whose formal degree2 is bounded by the size of the circuit.

PIT is an important algorithmic question in its own right, andmany classical results such as the

primality testing algorithm [3], IP = PSPACE [21, 29], algorithms for graph matching [22, 11, 32]

all have polynomial identity tests at their core.

This algorithmic question has two flavors: whitebox PIT and blackbox PIT. Whitebox

polynomial identity tests consist of algorithms that can inspect the circuit (that is, look at the

underlying gate connections etc.) to decide whether the circuit computes the zero polynomial

or not. A stronger algorithm is a blackbox polynomial identity test where the algorithm is only

provided basic parameters of the circuit (such as its size, the number of variables, a bound on the

formal degree) and only has evaluation access to the circuit �. Hence, a blackbox polynomial

identity test for a class C of circuits is essentially just a list of evaluation points � ⊆ F = such that

every nonzero circuit � ∈ C is guaranteed to have some a ∈ � such that �(a) ≠ 0. Such sets of

points are also called hitting sets for C. Therefore, the running time of a blackbox PIT algorithm

is given by the size of the hitting set, the time taken to generate it given the parameters of the

circuit, and the time taken to evaluate the circuit on these points. We shall say that a hitting set

� is explicit if there is an algorithm that, given the parameters =, 3, B, outputs the set � in time

that is polynomial in the bit complexity3 of �.

The classical Polynomial Identity Lemma4 [25, 9, 33, 28] states the following.

Lemma 1.1 (Polynomial Identity Lemma). Any nonzero polynomial 5 (G1 , . . . , G=) of degree at most
3 will evaluate to a nonzero value at a randomly chosen point from a finite grid (= ⊆ F = with probability
at least 1 − 3

|( | .

This automatically yields a randomized polynomial-time blackbox PIT algorithm, and also

an explicit hitting set of size (3 + 1)= , for the class of =-variate formal degree-3 polynomials.

Furthermore, a simple counting/dimension argument also says that there exist (non-explicit)

poly(B)-size hitting sets for the class of polynomials computed by size-B algebraic circuits. The

major open question is to find a better deterministic algorithm for this problem, and the task of

constructing deterministic PIT algorithms is intimately connected with the question of proving

explicit lower bounds for algebraic circuits.

Heintz and Schnorr [15], and Agrawal [1] observed that given an explicit hitting set for size-B

circuits, any nonzero polynomial that is designed to vanish on every point of the hitting set

1We use the abbreviation PIT for both the noun ‘polynomial identity test’ and gerund/adjective ‘polynomial

identity testing’. The case would be clear from context.

2This is defined inductively by setting the formal degree of leaves as 1, and taking the sum at every multiplication

gate and the max at every sum gate.

3Throughout the paper, we will only talk about the sizes of the hitting sets as their bit complexities (i. e., the

total bit-lengths) are always bounded by a polynomial in their respective sizes. We provide more details about this

analysis in subsection 4.1.

4A discussion of the history of this result can be found in [6].
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cannot be computable by size-B circuits. By tailoring the number of variables and degree of

the polynomial in this observation, they showed that polynomial-time blackbox PITs yield an

E-computable family { 5=} of =-variate multilinear polynomials that require 2
Ω(=)

-size circuits.

This connection between PIT and lower bounds was strengthened further by Kabanets and

Impagliazzo [18] who showed that explicit families of hard functions can be used to give

non-trivial derandomizations for PIT. Thus, the question of proving explicit lower bounds and

the task of finding upper bounds for PIT are essentially two sides of the same coin.

1.2 Bootstrapping

A recent result of Agrawal, Ghosh and Saxena [2] showed, among other things, the following

surprising result: blackbox PIT algorithms for size-B and =-variate circuits with running time as

bad as

(
B=

0.5−�
)
, where � > 0 is a constant, can be used to construct blackbox PIT algorithms

for size-B circuits with running time Bexp(exp($(log
∗ B)))

. Note that log
∗ = refers to the smallest

8 such that the 8-th iterated logarithm log
◦8(=) is at most 1. This shows that good-enough

derandomizations of PIT would be sufficient to get a nearly complete derandomization. Their

proof uses a novel bootstrapping technique where they use the connection between hardness and

derandomization repeatedly so that by starting with a weak hitting set we can obtain better and

better hitting sets.

One of the open questions of Agrawal, Ghosh and Saxena [2] was whether the hypothesis can

be strengthened to a barely non-trivial derandomization. That is, suppose we have a blackbox

PIT algorithm, for the class of =-variate, size-B circuits that runs in time B>(=), can we use this to

get a nearly complete derandomization? Note that we have a trivial (B + 1)= · poly(B) algorithm
from the Polynomial Identity Lemma (Lemma 1.1). Our main result is an affirmative answer to

this question in a very strong sense. Furthermore, our result holds for typical subclasses that are
reasonably well-behaved under composition. Formally, we prove the following theorem.

Theorem 1.2 (Bootstrapping PIT for algebraic formulas, branching programs and circuits). Let
& > 0 and = ≥ 2 be constants. Suppose that, for all large enough B, there is an explicit hitting set of
size B=−& for all degree-B, size-B algebraic formulas (or algebraic branching programs or circuits) over
= variables. Then, for all large B, there is an explicit hitting set of size Bexp(exp($(log

∗ B))) for the class
of degree-B, size-B algebraic formulas (or algebraic branching programs or circuits, respectively) over B
variables.

Remark 1.3. While the hypothesis of Theorem1.2 above assumes that = is a constant, qualitatively

similar results continue to hold even when = is slowly growing with B. For simplicity of notation,

we work with constant = throughout the paper and discuss the extension to growing = in more

detail in subsection 4.2.

Note that (B + 1)=−& = B=−& ·
(
1 + 1

B

)=−&
< e · B=−& < B=−&

′
for some other constant &′ > 0 since

B is large enough. Hence, for this theorem, there is no qualitative difference if the hitting set had

size (B + 1)=−& instead of B=−&. We also note that as far as we understand, such a statement for

classes such as algebraic formulas, even with the stronger hypothesis of there being an B$(=
(1/2)−&)

,
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did not follow from the results in [2]. We elaborate more on this, and the differences between

our proof and theirs in the next subsection.

An interesting, albeit simple corollary of the above result is the following statement.

Corollary 1.4 (From slightly non-trivial PIT to lower bounds). Let & > 0 and : ≥ 2 be constants.
Suppose that, for all large enough B, there is an explicit hitting set of size

(
B:−&

)
for all degree-B, size-B

algebraic formulas (or algebraic branching programs or circuits) over : variables. Then, for every function
3 : ℕ → ℕ, there is a polynomial family { 5=}, where 5= is an =-variate of degree 3(=), and for every
large enough =, 5= cannot be computed by algebraic formulas or algebraic branching programs or circuits

of size smaller than
(=+3
3

) 1

exp(exp($(log
∗ =3))) . Moreover, there is an algorithm which when given as input an

=-variate monomial of degree 3, outputs its coefficient in 5= in deterministic time
(=+3
3

)
.

Thus, a slightly non-trivial blackbox PIT algorithm leads to hard families with near optimal

hardness (as any =-variate polynomial of total degree 3 trivially has a circuit of size

(=+3
3

)
). In a

recent result concerning non-commutative algebraic circuits, Carmosino, Impagliazzo, Lovett

and Mihajlin [8] showed that given an explicit polynomial family of constant degree which

requires superlinear size non-commutative circuits, one can obtain explicit polynomial families

of exponential hardness. Besides the obvious differences in the statements, one important point

to note is that the notions of explicitness in the conclusions of the two statements are different

from each other. In [8], the final exponentially hard polynomial family is in VNP provided the

initial polynomial family is also in VNP. On the other hand, for our result, we can say that the

hard polynomial family obtained in the conclusion is explicit in the sense that its coefficients are

computable in deterministic time

(=+3
3

)
. Another difference between Corollary 1.4 and the main

result of [8] is in the hypothesis. From a non-trivial hitting set, we can obtain a large class of

lower bounds by varying parameters appropriately (see Theorem 1.5), however the main result

of [8] starts with a lower bound for a single family. In that regard, our hypothesis appears to be

much stronger and slightly non-standard. We discuss this issue in some detail at the end of the

next section.

In another relevant result, Jansen and Santhanam [17] showed thatmarginal improvements to

known hitting set constructions imply lower bounds for the permanent polynomial. In particular,

they show that a “sufficiently succinct” hitting set of size 3, for univariates of degree 3 that have

constant-free algebraic circuits of small size, would imply that the permanent polynomial requires

superpolynomial-size constant-free algebraic circuits. Note that even though their hypothesis

needs a much weaker improvement in the size of the hitting set when compared to ours, the

hitting set is additionally required to be “succinct”5, which makes it difficult to compare the two

hypotheses.

1.3 Proof overview

The basic intuition for the proofs in this paper, and as per our understanding also for the proofs

of the results in the work of Agrawal, Ghosh and Saxena [2], comes from the results of Kabanets

5They require their hitting sets to be encoded by uniform TC0
circuits of appropriately small size. See [17] for

details.
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and Impagliazzo [18], and those of Heintz and Schnorr [15] and Agrawal [1]. We start by

informally stating these results.

Theorem 1.5 (Informal, Heintz and Schnorr [15], Agrawal [1]). Let �(=, 3, B) be an explicit hitting
set for circuits of size B, degree 3 in = variables. Then, for every : ≤ = and 3′ such that 3′: ≤ 3 and
(3′ + 1): > |�(=, 3, B)|, there is a nonzero polynomial in : variables and individual degree 3′ that
vanishes on the hitting set �(=, 3, B), and hence cannot be computed by a circuit of size B.

In a nutshell, given an explicit hitting set, we can obtain hard polynomials. In fact, playing

around with the parameters 3′ and : ≤ =, we can get a hard polynomial in : variables, of degree

:3′ for all :, 3′ satisfying 3′: < 3 and (3′ + 1): > |�(=, 3, B)|.
We now state a result of Kabanets and Impagliazzo [18] that shows that hardness can lead to

derandomization.

Theorem 1.6 (Informal, Kabanets and Impagliazzo [18]). A superpolynomial lower bound for
algebraic circuits for an explicit family of polynomials implies a deterministic blackbox PIT algorithm for
all algebraic circuits in = variables and degree 3 of size poly(=) that runs in time 3$(=&) for every & > 0.

Now, we move on to the main ideas in our proof. Suppose we have non-trivial hitting sets

for size-B, degree 3 ≤ B circuits on = variables. The goal is to obtain a blackbox PIT for circuits

of size B, degree B on B variables with a much better dependence on the number of variables.

Observe that if the number of variables was much much smaller than B, say at most a

constant, then the hitting set in the hypothesis has a polynomial dependence on B, and we are

done. We will proceed by presenting variable reductions to eventually reach this stage. With this

in mind, the hitting sets for B-variate circuits in the conclusion of Theorem 1.2 are designed

iteratively starting from hitting sets for circuits with very few variables. In each iteration, we

start with a hitting set for size-B, degree 3 ≤ B circuits on = variables with some dependence

on = and obtain a hitting set for size-B, degree 3 ≤ B circuits on < = 2
=�

variables (for some

� > 0), that has a much better dependence on <. Then, we repeat this process till the number of

variables increases up to B, which takes $(log
∗ B) iterations. We now briefly outline the steps in

each such iteration.

• Obtaining a family of hard polynomials : The first step is to obtain a family of explicit

hard polynomials from the given hitting sets. This step is done via Theorem 1.5, which

simply uses interpolation to find a nonzero polynomial & in : variables and degree 3 that

vanishes on the hitting set for size-B′, degree-3′ circuits on = variables, for some B′, 3′ to be

chosen appropriately.

• Variable reduction using & : Next we take a combinatorial design (see Definition 2.6)

{(1 , (2 , . . . , (<}, where each (8 is a subset of size : of a universe of size ℓ = poly(:), and��(8 ∩ ( 9 �� � :. Consider the map Γ : F [G1 , G2 , . . . , G<] → F [H1 , H2 , . . . , Hℓ ] given by the

substitution Γ(�(G1 , G2 , . . . , G<)) = � (&(y |(1
), &(y |(2

), . . . , &(y |(< )). As Kabanets and

Impagliazzo show in the proof of Theorem 1.6, Γ preserves the nonzeroness of all algebraic

circuits of size B on < variables, provided & is hard enough.
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We remark that our final argument for this part is slightly simpler than that of Kabanets

and Impagliazzo, and hence our results also hold for algebraic formulas. In particular, we

do not need Kaltofen’s seminal result that algebraic circuits are closed under polynomial

factorization, whereas the proof of Kabanets and Impagliazzo crucially uses Kaltofen’s

result [19]. This comes from the simple, yet effective, observation that if & vanishes on

some hitting set, then so does any multiple of &. This allows us to use the hardness of

low-degree multiples of &, and so, we do not need any complexity guarantees on factors of

polynomials.

It is worth mentioning that the result of Kabanets and Impagliazzo [18] is the algebraic

analogue of the famous result of Nisan and Wigderson [24] from the boolean world.

However, the algebraic setting allows us to construct polynomials with hardness that is

super-exponential in the number of variables. This is a key reason for bootstrapping to work,

and we shall elaborate a bit more on this later in this section.

• Blackbox PIT for <-variate circuits of size B and degree B : We now take the hitting set

given by the hypothesis for the circuit Γ(�) (invoked with appropriate size and degree

parameters) and evaluate Γ(�) on this set. From the discussion so far, we know that if � is

nonzero, then Γ(�) cannot be identically zero, and hence it must evaluate to a nonzero

value at some point on this set. The number of variables in Γ(�) is at most ℓ = poly log<,

whereas its size turns out to be not too much larger than B. Hence, the size of the hitting set

for � obtained via this argument turns out to have a better dependence on the number of

variables < than the hitting set in the hypothesis.

To prove Corollary 1.4, we let C(=) = exp(exp($(log
∗ =))). Now, we invoke the the conclusion

of Theorem 1.2 with B =
(=+3
3

) 1

10C(=)
. Thus, we get an explicit hitting set � of size

(=+3
3

) 1

10

for

=-variate circuits of size B and degree 3. We now use Theorem 1.5 to get a nonzero polynomial

of degree 3 and = which vanishes on the set � and hence cannot be computed by circuits of size

at most B. We skip the rest of the details.

Why does bootstrapping work? As far as we understand, the primary reason that makes

such bootstrapping results feasible is the following observation from the results of Heintz and

Schnorr, and Agrawal [15, 1]: Given a single hitting set, we can obtain a family of lower bounds

by varying the degree and the number of variables in the interpolating polynomial. It turns

out that in the result of Kabanets and Impagliazzo [18] that converts a hard polynomial % into

a hitting set, the proof of this conversion has different sensitivities to the degree of % and the

number of variables it depends on. The combination of both these facts allows us to start with a

moderately non-trivial hitting set, obtaining a hard polynomial from it of the right degree and
number of variables, and use that to obtain a hitting set which is significantly better than what

we started with. In particular, by choosing a degree that is polynomial in the hitting set size,

say |� |0.1, we can obtain a constant-variate polynomial that vanishes on �, for any �. This is

impossible in the boolean world where the best hardness one could hope for is exponential in

the number of variables. This, in our opinion, is a high level picture of why bootstrapping works
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in the algebraic world.

Similarities and differences with the proof of Agrawal, Ghosh and Saxena [2]. The high level

outline of our proof is essentially the same as that in [2]. However, there are some differences

that make our final arguments shorter, simpler and more robust than those of Agrawal, Ghosh

and Saxena thus leading to a stronger and near optimal bootstrapping statement in Theorem 1.2.

Moreover, as we already alluded to, our proof extends to formulas and algebraic branching

programs as well, whereas, to the best of our understanding, the proofs in [2] do not. We now

elaborate on the differences.

One of the main differences between the proofs in this paper and those in [2] is in the use

of the result of Kabanets and Impagliazzo [18]. Agrawal, Ghosh and Saxena use this result

as a blackbox to get deterministic PIT using hard polynomials. The result of Kabanets and

Impagliazzo [18] requires a result of Kaltofen, which shows that low-degree algebraic circuits

are closed under polynomial factorization. That is, if a degree-3, =-variate polynomial % has a

circuit of size at most B, then any factor of % has a circuit of size at most (B=3)4 for a constant 4.

Such a closure result is not known to be true for formulas6, and hence the results in [2] do not

seem to extend to these settings. Also, the removal of any dependence on the “factorization

exponent” 4 is a key ingredient in our proof as it allows us to start with a hypothesis of a barely

non-trivial hitting set. To see this more clearly, suppose we wish to start with a hypothesis that

gives hitting sets of size B,(=) for =-variate circuits of size and degree B. It is then not too difficult

to infer from Lemma 3.2 that for any proof of “variable reduction” using the hybrid argument of
Kabanets and Impagliazzo [18], we require ,(=) to satisfy the relation 4 · ,(=) ≤ =. This would

mean that B,(=) can never be something like B=−& i. e., a poly(B) factor better than the trivial B= .

The other main difference between our proof and that in [2] is rather technical but we try

to briefly describe it. This is in the choice of combinatorial designs. The designs used in this

paper are based on the standard Reed-Solomon code and they yield larger set families than the

designs used by [2]. However, even without these improved design parameters, our proof can

be used to provide the same conclusion when starting off with a hitting set of size B=
�
, instead

of the hypothesis of Theorem 1.27.

Also, their proof is quite involved and we are unsure if there are other constraints in their

proof that force such choices of parameters. Our proof, though along almost exactly the

same lines, appears to be more transparent and more malleable with respect to the choice of

parameters.

The strength of the hypothesis. The hypothesis of Theorem 1.2 and also those of the results

in the work of Agrawal, Ghosh and Saxena [2] is that we have a non-trivial explicit hitting set for

algebraic circuits of size B, degree 3 on = variables where 3 and B could be arbitrarily large as

functions of =. This seems like an extremely strong assumption, and also slightly non-standard

6Even for algebraic branching programs such a result was shown only recently (after our work) by Sinhababu and

Thierauf [31].

7Even though =, & and � are constants, =� and (= − &) are qualitatively different, as & is independent of =.
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in the following sense. In a typical setting in algebraic complexity, we are interested in PIT for

size-B, degree-3 circuits on = variables where 3 and B are polynomially bounded in the number

of variables =. A natural open problem here, which would be a more satisfying statement to

have, would be to show that one can weaken the hypothesis in Theorem 1.2 to only hold for

circuits whose degree and size are both polynomially bounded in =. It is not clear to us if such a

result can be obtained using the current proof techniques, or is even true.

Having noted that our hypothesis is very strong, and perhaps even slightly unnatural with

respect to the usual choice of parameters in the algebraic setting, we remark that our hypothesis

does in fact follow from the assumptions that the Permanent is hard for Boolean circuits, and the

Generalized Riemann Hypothesis (GRH). The proof is essentially the same as that of Corollary

1 in the work of Jansen and Santhanam [17]. The only difference is that while Jansen and

Santhanam show that there are non-trivial explicit8 hitting sets for univariate polynomials with

small circuits assuming the hardness of Permanent for Boolean circuits and the GRH, here we

have to work with circuits computing multivariate polynomials. At a high level, the proof in [17]

proceeds by constructing a pseudorandom generator for Boolean circuits of appropriate size

assuming the hardness of permanent for Boolean circuits. Then, the set of binary strings in the

output of this generator is interpreted in a natural way as an integer. This gives us a small set of

integer points, which can be constructed deterministically. Then they argue that there is no

constant free algebraic circuit of small size which vanishes on all these integer points. The proof

of this step is by contradiction, where they assume the existence of such a constant free algebraic

circuit to construct a Boolean circuit of small size which is not fooled by the aforementioned

Boolean pseudorandom generator. For algebraic circuits which are not constant free and are

allowed to use arbitrary field constants and hence cannot be efficiently simulated by a Boolean

circuit, they assume the GRH to reduce to the case of constant free circuits in a fairly standard

way. For our setting, we interpret the output of the Boolean pseudorandom generator as not

just a single integer point, but a : tuple of integers points. These set of points in ℤ:
form our

candidate hitting set. The rest of the proof carries over without any changes. We refer the

interested reader to [17] for further details.

Remark 1.7. Throughout the paper, we shall assume that there are suitable b·c’s or d·e’s if

necessary so that certain parameters chosen are integers. We avoid writing this purely for the

sake of readability.

All results in this paper continue to hold for the underlying model of algebraic formulas,

algebraic branching programs or algebraic circuits. In fact, the results also extend to the model

of border of algebraic formulas, algebraic branching programs or algebraic circuits i. e.if there is

a slightly non-trivial hitting set for polynomials in the border of these classes, then our main

theorem gives a highly non-trivial explicit hitting set for these polynomials. Since our proofs

extend as it is to this setting with essentially no changes, we skip the details for this part, and

confine our discussions in the rest of the paper to just standard algebraic formulas.

8In fact their notion of explicitness is stronger than ours.
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2 Preliminaries

Notation

• For a positive integer =, we use [=] to denote the set {1, 2, . . . , =}.
• We use boldface letters such as x[=] to denote a set {G1 , . . . , G=}. We drop the subscript

whenever the number of elements is clear or irrelevant in the context.

• For a polynomial 5 (G1 , . . . , G=), we shall say its individual degree is at most : to mean that

the exponent of any of the G8’s in any monomial is at most :.

We now define some standard notions we work with, and state some of the known results

that we use in this paper.

2.1 Algebraic models of computation

Throughout the paper we would be dealing with some standard algebraic models and we define

them formally for completeness.

Definition 2.1 (Algebraic branching programs (ABPs)). An algebraic branching program in

variables {G1 , G2 , . . . , G=} over a field F is a directed acyclic graph with a designated starting
vertex B with in-degree zero, a designated end vertex C with out-degree zero, and the edge between

any two vertices labeled by an affine form from F [G1 , G2 , . . . , G=]. The polynomial computed by

the ABP is the sum of all weighted paths from B to C, where the weight of a directed path in an

ABP is the product of labels of the edges in the path.

The size of an ABP is defined as the number of edges in the underlying graph.

Definition 2.2 (Algebraic formulas). An algebraic circuit is said to be a formula if the underlying
graph is a tree. The size of a formula is defined as the number of leaves.

The notation C(=, 3, B)will be used to denote the class of =-variate9 polynomials of degree

at most 3 that are computable by formulas of size at most B.

We will use the following folklore algorithm for computing univariate polynomials, often

attributed to Horner10. We also include a proof for completeness.

Proposition 2.3 (Horner rule). Let %(G) = ∑3
8=0

?8G
8 be a univariate polynomial of degree 3 over any

field F . Then, % can be computed by an algebraic formula of size 23 + 1.

Proof. Follows from the fact that %(G) = (· · · ((?3G + ?3−1)G + ?3−2) · · · )G + ?0, which is a formula

of size 23 + 1. �

9This class may also include polynomials that actually depend on fewer variables but are masquerading as

=-variate polynomials.

10Though this method was discovered at least 800 years earlier by the Iranian mathematician and astronomer

Sharaf al-Dı̄n T
.
ūsı̄ (see Hogendĳk [16]).
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The following observation shows that the classes of algebraic formulas/ABPs/circuits are

“robust” under some very natural operations; we shall call such models as natural models. These
properties are precisely the ones that we rely on in this paper. Any natural model would be

sufficient for our purposes but it might be convenient for the reader to focus on just the standard

models of formulas, ABPs and circuits.

Definition 2.4 (Natural algebraic models). An algebraic modelA is called a natural model if the
class of polynomials computed by it satisfies the following properties.

• Any polynomial of degree 3 with at most B monomials has A-size at most B · 3. In the

specific setting when the polynomial is a univariate, itsA-size is $(3).
• Partial substitution of variables by constants does not increase theA-size of any polynomial.

• If each of &1 , . . . , &: is computable inA-size B, then
∑
&8 is computable inA-size at most

B:.

• Suppose %(G1 , . . . , G=) is computable in A-size B1 and say &1 , . . . , &= are polynomials

each of which can be computed in A-size B2. Then, %(&1 , . . . , &=) can be computed in

A-size at most B1 · B2.

Observation 2.5. Algebraic circuits, branching programs (ABPs), and formulas are natural algebraic
models.

2.2 Combinatorial designs

Definition 2.6 (Combinatorial designs (Nisan [23])). A family of sets {(1 , . . . , (<} is said to be

an (ℓ , :, A) design if

• (8 ⊆ [ℓ ],
• |(8 | = :,
•

��(8 ∩ ( 9 �� < A for any 8 ≠ 9.

The following is a standard construction of such designs based on the Reed-Solomon code, similar

to the construction described in [24, Lemma 2.5].

Lemma 2.7 (Construction of designs). Let 2 ≥ 2 be any positive integer. There is an algorithm that,
given parameters ℓ , :, A satisfying ℓ = :2 and A ≤ : with : being a power of 2, outputs an (ℓ , :, A) design
{(1 , . . . , (<} for < ≤ :(2−1)A in time poly(<).

Proof. Since : is a power of 2, we can identify [:] with the field F: of :-elements and [ℓ ] with

F: × F:2−1 . For each univariate polynomial ?(G) ∈ F:2−1[G] of degree less than A, define the set (?
as

(? = {(8 , ?(8)) : 8 ∈ F:} .

Since there are :(2−1)A
such polynomials we get :(2−1)A

subsets of F: × F:2−1 of size : each.

Furthermore, since any two distinct univariate polynomials cannot agree at A or more places, it

follows that

��(? ∩ (@ �� < A for ? ≠ @. �
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2.3 Hardness-randomness connections

Observation 2.8. Let � be a hitting set for the class C(=, 3, B) of =-variate polynomials of degree at
most 3 that are computable by formulas of size B. Then, for any nonzero polynomial &(G1 , . . . , G=) such
that deg(&) ≤ 3 and &(a) = 0 for all a ∈ �, we have that & cannot be computed by formulas of size B.

Proof. If& was indeed computable by formulas of size at most B, then& is a member of C(=, 3, B)
for which � is a hitting set. This would violate the assumption that � was a hitting set for this

class as & is a nonzero polynomial in the class that vanishes on all of �. �

From this observation, it is easy to see that explicit hitting sets can be used to construct lower

bounds.

Lemma 2.9 (Hitting sets to hardness [15, 1]). Let � be an explicit hitting set for C(=, 3, B). Then, for
any : ≤ = such that : |� | 1: ≤ 3, there is a polynomial &(I1 , . . . , I:) of individual degree smaller than
|� | 1: that is computable in time poly(|� |) that requires formulas of size B to compute it. Furthermore,
given the set �, there is an algorithm to output a formula of size |� | · 3 for & in time poly(|� |).

Proof. This is achieved by finding a nonzero :-variate polynomial, for : ≤ =, of individual

degree 3′ < |� | 1: , that vanishes on the hitting set �; this can be done by interpreting it as a

homogeneous linear system with (3′ + 1): “variables” and at most |� | “constraints”. Such a &:

can then be found via interpolation by solving a system of linear equations in time poly(|� |).
The degree of &: is at most : · |� | 1: ≤ 3 from the hypothesis and the hardness of &: follows

from Observation 2.8. �

Remark 2.10 (Bit complexity of &:). Note that we can obtain a hard polynomial &: such that its

coefficients have bit-lengths that are at most polynomially large in terms of the (total) bit-lengths

of the points in the given hitting set. Moreover, one can also ensure that such a computation only

handles numbers of polynomially larger bit-lengths11, thereby making Lemma 2.9 constructive

in an explicit sense.

It is also known that we can get non-trivial hitting sets from suitable hardness assumptions.

For a fixed (ℓ , :, A) design {(1 , . . . , (<} and a polynomial &(I1 , . . . , I:) ∈ F [z]we shall use the

notation &Jℓ , :, AKNW to denote the vector of polynomials

&Jℓ , :, AKNW := (&(y |(1
), &(y |(2

), . . . , &(y |(< )) ∈ (F [H1 , . . . , Hℓ ])< .

Kabanets and Impagliazzo [18] showed that, if &(z[:]) is hard enough, then %(&Jℓ , :, AKNW)
is nonzero if and only if %(x[<]) is nonzero. However, their proof crucially relies on a result of

Kaltofen [19] (or even a non-algorithmic version due to Bürgisser [7]) about the complexity of

factors of polynomials. Hence, this connection is not directly applicable while working with

other subclasses of circuits such as algebraic formulas as we do not know if they are closed

11Edmonds has shown that Gaussian elimination runs in polynomial time in terms of the total bit-length of the

input [10], see [27, Theorem 3.3]. The same effect is achieved by Bareiss’s algorithm [4], a modification of Gaussian

elimination.
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under factorization. The following lemma can be used in such settings and this paper makes

heavy use of this.

Lemma2.11 (Hardness to randomnesswithout factor complexity). Let&(I1 , . . . , I:) be an arbitrary
polynomial of individual degree smaller than 3. Suppose there is an (ℓ , :, A) design {(1 , . . . , (<} and a
nonzero polynomial %(G1 , . . . , G<), of degree at most �, that is computable by a formula of size at most
B such that %(&Jℓ , :, AKNW) ≡ 0. Then there is a polynomial %̃(I1 , . . . , I:), whose degree is at most
: · 3 · � that is divisible by & and computable by formulas of size at most B · (A − 1) · 3A · (� + 1).

Moreover, if A = 2, then this upper bound can be improved to 4 · B · 3 · (� + 1)

If the polynomial&(I1 , . . . , I:) in the above lemmawas chosen such that& vanished on some

hitting set� for the class of size-B′, =-variate, degree 3′ polynomialswhere B′ ≥ B ·(A−1)·3A ·(�+1),
then sodoes %̃ since& divides it. If it happens that deg(%̃) ≤ 3′, thenObservation 2.8 immediately

yields that %̃ cannot be computed by formulas of size B′, contradicting the conclusion of the

above lemma. Hence, in such instances, we would have that %(&Jℓ , :, AKNW) . 0, without

appealing to any result about closure of the particular model under factorization.

Proof. Borrowing the ideas from Kabanets and Impagliazzo [18], we look at the <-variate

substitution (G1 , . . . , G<) ↦→ &Jℓ , :, AKNW as a sequence of < univariate substitutions. We now

introduce some notation to facilitate this analysis.

Given the (ℓ , :, A) design {(1 , . . . , (<}, let y8 = y |(8 , for each 8 ∈ [<]. The tuple &Jℓ , :, AKNW

can therefore be written as (&(y1), &(y2), . . . , &(y<)) ∈ (F [H1 , . . . , Hℓ ])< . For each 0 ≤ 8 ≤ <, let

%8 = %(&(y1), &(y2), . . . , &(y8), G8+1 , . . . , G<) ,

which is % after substituting for the variables G1 , . . . , G8 . Since %0 = % is a nonzero polynomial

and %< = %(&Jℓ , :, AKNW) ≡ 0, let C be the unique integer with 1 ≤ C ≤ <, for which %C−1 . 0

and %C ≡ 0.

Since %C(y, GC , . . . , G<) is a nonzero polynomial, there exist values that can be substituted to

the variables besides GC and yC such that it remains nonzero; let this polynomial be %′C(yC , GC).
Also, for each 9 ∈ [C − 1], let &(C)(y9 ∩ yC) be the polynomial obtained from &(y9) after this
substitution, which is a polynomial of individual degree less than 3 on at most (A − 1) variables.
We can now make the following observations about %′(yC , GC):

• Each &(C)(y9 ∩ yC) has a formula of size at most (3(A − 1)) · 3A−1
, and thus %′(yC , GC) has a

formula of size at most (B · (A − 1) · 3A),
• deg(%′) ≤ � · deg(&) ≤ � · (:3), and degGC

(%′) ≤ �,

• %′(yC , &(yC)) ≡ 0.

The last observation implies that the polynomial (GC −&(yC)) divides %′. Therefore we can

write %′ = (GC −&(yC)) · ', for some polynomial '. Consider %′ and ' as univariates in GC with

coefficients as polynomials in yC :

%′ =
�∑
8=0

%′8 · G
8
C , ' =

�−1∑
8=0

'8 · G 8C .
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If 0 is the smallest index such that %′0 ≠ 0, then %′0 = −'0 · &(yC) and hence &(yC) divides %′0 .
Any coefficient %′

8
can be obtained from %′ using interpolation from (� + 1) evaluations of GC .

Hence, %̃ = %′0 can be computed in size (B · (A − 1) · 3A · (� + 1)).
For the case of A = 2, observe that the polynomial &(C)(y9 ∩ yC) is a univariate of degree at

most 3. Thus, by Proposition 2.3, &(C)(y9 ∩ yC) can be computed by a formula of size 23 + 1 ≤ 43.

So, we get an upper bound of (4 · B · 3) on the formula complexity of %′(yC , GC) (instead of $(B32)
that we would get by invoking the general bound for A = 2) and after interpolation as above, we

get a bound of 4 · B · 3 · (� + 1) on the formula complexity of %′0 as defined above. �

3 Bootstrapping Hitting Sets

The following are the main bootstrapping lemmas to yield our main result. These lemmas

follow the same template as in the proof of Agrawal, Ghosh and Saxena [2] but with some

simple but important new ideas that avoid any requirement on bounds on factor complexity,

and also permitting a result starting from a barely non-trivial hitting set.

Lemma 3.1 (Barely non-trivial to moderately non-trivial hitting sets). Let & > 0 and = ≥ 2 be
constants. Suppose that for all large enough B there is an explicit hitting set of size B=−&, for all degree-B,
size-B algebraic formulas over = variables.

Then for a large enough < ≥ =8, and for all B ≥ <, there is an explicit hitting set of size B <50 for all
degree-B, size-B algebraic formulas over < variables.

Lemma 3.2 (Bootstrapping moderately non-trivial hitting sets). Let =0 be large enough, and = be
any power of two that is larger than =0. Suppose for all B ≥ = there are explicit hitting sets of size B,(=)
for C(=, B, B), the class of =-variate degree-B polynomials computed by size-B formulas.

1. Suppose ,(=) ≤ =
50
, then for < = =10 and all B ≥ <, there are explicit hitting sets of size Bℎ(<) for

C(<, B, B) where ℎ(<) ≤
(

1

2

)
· < 1

4 .

2. Suppose ,(=) ≤
(

1

2

)
· = 1

4 , then for < = 2
=

1

4 and all B ≥ <, there are explicit hitting sets of size

Bℎ(<) for C(<, B, B) where ℎ(<) = 20 ·
(
,(log

4 <)
)

2

.

Furthermore, ℎ(<) also satisfies ℎ(<) ≤
(

1

2

)
· < 1

4 .

We will defer the proofs of these lemmas to the end of this section and complete the proof of

Theorem 1.2.

Theorem 1.2 (Bootstrapping PIT for algebraic formulas, branching programs and circuits). Let
& > 0 and = ≥ 2 be constants. Suppose that, for all large enough B, there is an explicit hitting set of
size B=−& for all degree-B, size-B algebraic formulas (or algebraic branching programs or circuits) over
= variables. Then, for all large B, there is an explicit hitting set of size Bexp(exp($(log

∗ B))) for the class
of degree-B, size-B algebraic formulas (or algebraic branching programs or circuits, respectively) over B
variables.
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Proof. Notice that Lemma 3.1 and Lemma 3.2 are structured so that the conclusion of Lemma 3.1

is precisely the hypothesis of Lemma 3.2(1), the conclusion of Lemma 3.2(1) is precisely the

hypothesis of Lemma 3.2(2), and Lemma 3.2(2) admits repeated applications as its conclusion

also matches the requirements in the hypothesis. Thus, we can use one application of Lemma 3.1

followed by one application of Lemma 3.2(1) and repeated applications of Lemma 3.2(2) to get

hitting sets for polynomials depending on larger sets of variables, until we can get a hitting set

for the class C(B, B, B).
Let =0 be large enough so as to satisfy the hypothesis of Lemma 3.1, and the two parts of

Lemma 3.2. We start with an explicit hitting set of size B=0−&
for C(=0 , B , B) and one application

of Lemma 3.1 gives an explicit hitting set of size B
=

1

50 for C(=1 , B , B) for =1 ≥ =8

0
and all B ≥ =1.

Using Lemma 3.2(1) we obtain an explicit hitting set of size B(1/10)·<
1

4

0 for the class C(<0 , B , B) for
all B ≥ <0 = =

10

1
. We are now in a position to apply Lemma 3.2(2) repeatedly. We now set up

some basic notation to facilitate this analysis.

Suppose after 8 applications of Lemma 3.2(2) we have an explicit hitting set for the class

C(<8 , B , B) of size BC8 . We wish to track the evolution of <8 and C8 . Recall that <8 = 2
<

1

4

8−1 after

one application of Lemma 3.2(2).

Let {18}8 be such that 10 = log<0 and, for every 8 > 0, let 18 = 2
(18−1/4)

so that 18 = log<8 .

Similarly to keep track of the complexity of the hitting set, if BC8 is the size of the hitting set for

C(<8 , B , B), then by Lemma 3.2(2) we have C0 =
(

1

2

)
<

1

4

0
and C8 = 20 · C2

8−1
for all 8 > 0.

The following facts are easy to verify.

• <8 ≥ B or 18 ≥ log B for 8 = $(log
∗ B),

• for all 9, we have C 9 = 20
(29−1) · C29

0
= exp(exp($(9))).

• the exponent of B in the complexity of the final hitting set is C$(log
∗ B) = exp(exp($(log

∗ B))).

Therefore we have an explicit hitting set of size Bexp(exp($(log
∗ B)))

for C(B, B, B). An explicit

algorithm describing the hitting set generator is presented in Subsection 4.1. �

3.1 Proofs of the bootstrapping lemmas

Here we prove the two main lemmas used in the proof of Theorem 1.2. We restate the lemmas

here for convenience. The proofs follow a very similar template but with different settings of

parameters and minor adjustments.

Lemma 3.3 (Barely non-trivial to moderately non-trivial hitting sets). Let & > 0 and = ≥ 2 be
constants. Suppose that for all large enough B there is an explicit hitting set of size B=−&, for all degree-B,
size-B algebraic formulas over = variables.

Then for a large enough < ≥ =8, and for all B ≥ <, there is an explicit hitting set of size B <50 for all
degree-B, size-B algebraic formulas over < variables.

Proof. Let 0 = max(=, 250

& ). We begin by fixing the design parameters, : = =, ℓ = 0 · :4 = 0 · =4

and A = 2.
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Constructing a suitably hard polynomial: For� = 5:
& , we construct apolynomial&:(I1 , . . . , I:)

that vanishes on the hitting set for all size-B� degree-B� formulas over : variables, that has

size B�(:−&) using Lemma 2.9. The polynomial &:(z) has the following properties.

• &: has individual degree 3 < B�(:−&)/: , and total degree < : · B�(:−&)/: .
• &: is not computable by formulas of size B�.

• &: has a formula of size ≤ (:3) · B�(:−&).

Building the NW design: Using Lemma 2.7, we now construct an (ℓ , :, A) design {(1 , . . . , (<}
with < :=

(
ℓ
:

) A
=

(
0:(4−1)

)
2

= 02:6
.

Variable reduction: Let %(G1 , . . . , G<) be a nonzero <-variate degree-B polynomial computable

by a formula of size B, and let %(&:Jℓ , :, AKNW) ≡ 0. Then, from the ‘moreover’ part of

Lemma 2.11 (since A = 2), we get that there is a polynomial %̃(I1 , . . . , I:) that vanishes on
a hitting set for formulas of size B� and degree B�, and is computable by a formula of size

at most

size(%̃) ≤ 4 · B · 3 · (B + 1)
≤ 4B(B + 1) · B�(:−&)/:

≤ B
(
5+ �(:−&)

:

)
= B5+ 5:

& −5 = B� .

Moreover, note that the degree of %̃(I1 , . . . , I:) is at most (: · 3) · B ≤ B
(
2+ �(:−&)

:

)
< B�. Since

%̃ vanishes on the hitting set for formulas of size B� and degree B�, we get a contradiction

due to Observation 2.8. Therefore, it must be the case that %(&:Jℓ , :, AKNW) is nonzero.

Construction of the hitting set: Therefore, starting with a nonzero formula of degree B, size B,

over < variables, we obtain a nonzero ℓ -variate polynomial of degree at most B · (:3) ≤ B�.
At this point we can just use the trivial hitting set given by the Polynomial Identity Lemma

(Lemma 1.1) which has size at most B�ℓ .

Therefore, what remains to show is that our choice of parameters ensures that �ℓ < <
50
.

This is true, as
<
50
= 02:6

50
= 0:

50
· 0:5 =

(
1

2

)
· ℓ · : > �ℓ .

The construction runs in time that is polynomial in the size of the hitting set in the conclusion,

and the bit-size of the points in it. See Subsection 4.1 for a more elaborate discussion. �

Lemma 3.4 (Bootstrapping moderately non-trivial hitting sets). Let =0 be large enough, and = be
any power of two that is larger than =0. Suppose for all B ≥ = there are explicit hitting sets of size B,(=)
for C(=, B, B), the class of =-variate degree-B polynomials computed by size-B formulas.

1. Suppose ,(=) ≤ =
50
, then for < = =10 and all B ≥ <, there are explicit hitting sets of size Bℎ(<) for

C(<, B, B) where ℎ(<) ≤
(

1

2

)
· < 1

4 .
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2. Suppose ,(=) ≤
(

1

2

)
· = 1

4 , then for < = 2
=

1

4 and all B ≥ <, there are explicit hitting sets of size

Bℎ(<) for C(<, B, B) where ℎ(<) = 20 ·
(
,(log

4 <)
)

2

.

Furthermore, ℎ(<) also satisfies ℎ(<) ≤
(

1

2

)
· < 1

4 .

Proof. The proofs of both parts follow the same template as in the proof of Lemma 3.1 but with

different parameter settings. Hence, we will defer the choices of the parameters ℓ , :, A towards

the end to avoid further repeating the proof. For now, let ℓ , :, A be parameters that satisfy A ≤ :,
ℓ = :2

and 5A · ,(=) ≤ :.

Constructing a hard polynomial: The first step is to construct a polynomial &:(I1 , . . . , I:) that
vanishes on the hitting set for the class C(=, B5 , B5), where12 : ≤ =. This can be done by

using Lemma 2.9. The polynomial &:(z)will therefore have the following properties.

• &: has individual degree 3 smaller than B5,(=)/:
, and degree at most : · B5,(=)/:

.

• Computing &: requires formulas of size more than B5
.

• &: has a formula of size at most B10,(=)
.

Building the NW design: Using the parameters ℓ , :, A, and the construction from Lemma 2.7,

we now construct an (ℓ , :, A) design {(1 , . . . , (<} with < ≤ :A .

Variable reduction using &: : Let %(G1 , . . . , G<) ∈ C(<, B, B) be a nonzero polynomial. Suppose

for contradiction that %(&:Jℓ , :, AKNW) ≡ 0, then Lemma 2.11 states that there is a nonzero

polynomial %̃(I1 , . . . , I:) of degree at most B · : · 3 such that &: divides %̃, and that %̃ can

be computed by a formula of size at most

B · (A − 1) · 3A · (B + 1) ≤ B4 · 3A

≤ B4 · B5A·,(=)/:

≤ B5. (since :, A satisfy 5A · ,(=) ≤ :)

Furthermore, the degree of %̃ is at most B · A · B5,(=)/: ≤ B5
. Hence, %̃ is a polynomial

in : ≤ = variables, of degree at most B5
that vanishes on the hitting set of C(=, B5 , B5)

since &: divides %̃. But then, Observation 2.8 states that %̃ must require formulas of

size more than B5
, contradicting the above size bound. Hence, it must be the case that

%(&:Jℓ , :, AKNW) . 0.

Hitting set for C(<, B, B): At this point, we set the parameters : and A depending on how

quickly ,(=) grows.

Part (1)
(
,(=) ≤ =

50

)
: In this case,we choose : = = and A = 10 (sowe satisfy 5A·,(=) ≤ = = :).

From Lemma 2.7, we have an explicit (ℓ , :, A) design {(1 , . . . , (<} with < = :A = =10
.

12that is, &: is a :-variate polynomial that is just masquerading as an =-variate polynomial that does not depend

on the last = − : variables.
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For any nonzero % ∈ C(<, B, B), we have that %(&:Jℓ , :, AKNW) is a nonzero ℓ -variate
polynomial of degree at most B · : · B5,(=)/: ≤ B3

. Hence, by just using the trivial hitting

set via the Polynomial Identity Lemma (Lemma 1.1) we have an explicit hitting set of

size B3ℓ ≤ B3<
1

5

. Since < ≥ =0 and =0 is large enough, we have that

ℎ(<) := 3<
1

5 ≤
(
1

2

)
· < 1

4 .

Part (2)
(
,(=) ≤

(
1

2

)
=

1

4

)
: In this case, we choose : =

√
= and A = =

1

4 , so that 5A · ,(=) ≤
10A · ,(=) ≤ : and ℓ = =. Using Lemma 2.7, we now construct an explicit (ℓ , :, A)
design {(1 , . . . , (<} with < = 2

=
1

4 ≤ :A .
We have a formula computing the =-variate polynomial %(&:Jℓ , :, AKNW) of size at
most B · B10,(=) ≤ B20,(=) =: B′. Using the hypothesis for hitting sets for C(=, B′, B′), we

have an explicit hitting set for C(<, B, B) of size at most

(B′),(=) = B20,(=)2 = Bℎ(<) ,

where ℎ(<) = 20

(
,((log<)4)

)
2

. Since =0 is large enough, we have that

10 · ℎ(<) ≤ 20 · 10 ·
(
,((log<)4)

)
2

≤ 2

(
log<

)
2

(since ,(=) ≤
(
1

2

)
=

1

4 )

≤ < 1

4 . (since < ≥ =0 and =0 is large enough)

This completes the proof of both parts of the lemma. �

4 Finer analysis of the main result

This section addresses some of the subtle aspects about Theorem 1.2 as follows. First, we

provide an algorithm outlining all the steps in obtaining the final hitting set from the initial one,

which also helps us illustrate the explicitness of all the intermediate hitting sets (including the

corresponding bit complexities). We then discuss how our theorem statement changes if the

hypothesis holds only when the number of variables is a growing function of the size/degree B.

4.1 Algorithm for generating the hitting set

We now give an algorithm to generate an explicit hitting set for C(B, B, B), for all large B, using
the hypothesis of Theorem 1.2. Let =0 be the initial threshold from the hypothesis and let =1 be

a constant that satisfies the “large enough” requirements of Lemma 3.2.
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=0 ≥ 2 C0 = (=0 − &)

=1 is large enough C1 =
=1

50

=2 = =
10

1
C2 =

(
1

10

)
=

1

4

2

For all 8 ≥ 3, =8 = 2
=

1

4

8−1 C8 := 20C28−1

We are provided an algorithm Initial-Hitting-Set(B) that outputs a hitting set for C(=0 , B , B) of
size at most B=0−&

. Algorithm 1 describes a function Hitting-Set which, given inputs 8 and B,

outputs a hitting set for C(=8 , B , B) of size at most BC8 in time poly(BC8 ).
From the growth of =8 , it follows that =1 ≥ B for 1 = $(log

∗ B) and C8 = 20
2
8−1C2

8

0
. Un-

folding the recursion for Hitting-Set(9 , B), for any 9, the algorithm makes at most 2
9
calls to

Initial-Hitting-Set(B′) for various sizes B′ satisfying

B′ ≤ B�·20
9−1

∏9−1

8=1
C8 ≤ B�C

2

9−1 = B$(C 9).

Thus for Hitting-Set(1, B), the algorithm makes at most 2
1
calls to Initial-Hitting-Set(B′), for

sizes B′ that are at most Bexp(exp($(log
∗ B)))

. The overall running time is polynomial time in the size

of the final hitting set which is BC1 = Bexp(exp($(log
∗ B)))

.

Bit complexity of the hitting sets. We will now discuss the bit complexity of the hitting sets

that are generated during the bootstrapping procedure. We will analyze Algorithm 1 and

show that any hitting set � for =-variate formulas that the algorithm outputs, will have a bit

complexity that is at most |� | 5 (=), for 5 (=) = exp($(log
∗ =)).

Let us first consider the case when 8 ≥ 3. Suppose each evaluation point in (0 := �8−1(B5) is at
most ℎ0 bits long, where ℎ = |(0 | and 0 = 5 (=8−1). Using Remark 2.10, we get that each coefficient

of& is atmost ℎ20 bits long, for some other constant 2. The output of Algorithm 1 for this casewill

be evaluations of & on (1 := �8−1(B20C8−1). Since |(1 | = ℎ4C8−1
, the bit complexity of (1 is at most

ℎ40C8−1
. Now & is a degree < B5

polynomial with $(ℎ)monomials. As a result any evaluation of

& on a point from (1 will have at most $(log ℎ) ·
(
ℎ20 + B5 · ℎ40C8−1

)
≤ ℎ20·(4C8−1) = |(1 |20 , as C8−1 is

large enough. Since =8 = 2
=

1/4
8−1 , we have that 5 (=) = exp($(log

∗ =)). For the cases when 8 = 1 or

8 = 2, since we use the trivial hitting sets in place of (1 in the above discussion, the same bounds

will continue to hold.

We want to remark that although the bit complexity of the output of Hitting-Set(8 , B) is
not polynomial in the size BC8 , the exponent C8 is always larger than 5 (=8). As a result the time

taken to generate the final hitting set in the conclusion of Theorem 1.2 can still be bounded by

Bexp(exp($(log
∗ B)))

, albeit with a slightly larger constant in $(log
∗ B).
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Algorithm 1: Hitting-Set

Input : Parameter 8 and a size B.

Output : A hitting set of size BC8 size for C(=8 , B , B).
1 if 8 = 1 then
2 Let � = max

(
=0 ,

250

&

)
, � = 3=0

&

3 Let �0(B�) := Initial-Hitting-Set(B�) // size at most B�(=0−&)

4 Compute a nonzero polynomial & in : = =0 variables of individual degree smaller

than B�C0/: that vanishes on �0(B�). // takes poly(B�C0) time
5 Compute an (� · =4

0
, =0 , 2)-design {(1 , . . . , (=1

} .
6 Let ( ⊆ F be of size at least B�.

7 return
{
(&Jℓ , :, AKNW) (a) : a ∈ (�=5

0

}
// size at most B��=

5

0 ≤ B
=

1

50 = BC1

8 else if 8 = 2 then
9 �1(B5) := Hitting-Set(1, B5) // size at most B5C1

10 Compute a nonzero polynomial & in : = =1 variables of individual degree smaller

than B5C1/:
that vanishes on �1(B5). // takes poly(B5C1) time

11 Compute an (=2

1
, =1 , 10)-design {(1 , . . . , (=2

} .
12 Let ( ⊆ F be of size at least B3

.

13 return
{
(&Jℓ , :, AKNW) (a) : a ∈ (=2

1

}
// size at most B3=2

1 ≤ B0.1·=
1

4

2 = BC2

14 else if 8 ≥ 3 then
15 �8−1(B5) := Hitting-Set(8 − 1, B5) // size at most B5C8−1

16 Compute a nonzero polynomial & in : =
√
=8−1 variables of individual degree

smaller than B5C8−1/:
that vanishes on �8−1(B5). // takes poly(B5C8−1) time

17 Compute an (=8−1 ,
√
=8−1 , 4

√
=8−1)-design {(1 , . . . , (=8 }

18 �8−1(B20C8−1) := Hitting-Set(8 − 1, B20C8−1) // size at most B20C2
8−1

19 return
{
(&Jℓ , :, AKNW) (a) : a ∈ �8−1(B20C8−1)

}
// size at most B20C2

8−1 = BC8
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4.2 Bootstrapping with a slightly weaker hypothesis

We now discuss the analogue of Theorem 1.2 when the number of variables = in the hypothesis

grows with the size parameter B. In particular, the hypothesis now guarantees a hitting set that

is better than the brute force hitting set of size (B + 1)= only when = grows faster than a certain

function of B. For example, suppose that for all large = and B, the class C(=, B, B) has hitting sets

of size13 at most B=
�(log

◦3 B)�
for some small constant �. Note that this hypothesis is not “helpful”

when = is a constant, or even (log
◦3 B)>(1). Nevertheless, we shall show that even this scenario

allows for a very similar bootstrapping procedure, and leads to hitting sets of size Bpoly(log
◦2 B)

for

the class C(B, B, B).
We now state the analogue of the “single-step lemma” (Lemma 3.2) that helps us in proving

our main theorem of this section (Theorem 4.2, which is proved at the end of the section).

Lemma 4.1. Let , , C : ℕ→ ℕ be non-decreasing functions such that ,(:) ≤ :1/4 and C(Glog G) ≤ 2C(G)
for all G. Let 1 ≤ < ≤ B such that

20 · ,
(
(log<)4

)
· C(B) ≤ log<. (4.1)

Let (:1 , B1) =
(
(log<)4 , B5

)
and (:2 , B2) =

(
(log<)4 , B100,((log<)2)C(B)

)
. Suppose C(:1 , B1 , B1) and

C(:2 , B2 , B2) have explicit hitting sets of size at most B,(:1)C(B1)
1

and B,(:2)C(B2)
2

, respectively.
Then, we have an explicit hitting set for C(<, B, B) of size at most B,′(<)C′(B), where

,′(<) ≤ 400 ·
(
,

(
(log<)4

))
2

C′(B) ≤ C(B)2.

Proof. The proof is exactly along similar lines, with just a little more care to set parameters

appropriately.

Fix any <, B that satisfy equation (4.1). Set A = log<, : = (log<)2 and ℓ = (log<)4. With

these parameters, equation (4.1) simplifies to 20 · ,(ℓ ) · C(B) ≤ A.
Let (1 , . . . , (< be an (ℓ , :, A) design, as guaranteed by Lemma 2.7. Let B1 = B5

. By the

hypothesis for (:1 = ℓ , B1) , there is an explicit hitting set� of size atmost B
,(ℓ )C(B1)
1

≤ B5,(ℓ )·2·C(B) ≤ BA
for C(:, B1 , B1). Let &(I1 , . . . , I:) be the explicit polynomial of individual degree at most

B10,(ℓ )C(B)/: ≤ BA/: , as guaranteed by Lemma 2.9, that vanishes on the set �. Therefore, &:

satisfies the following properties:

• &: has individual degree less than B
A/:

and total degree at most : · BA/: .
• &: can be computed by formulas of size at most B20,(ℓ )C(B) ≤ BA .

Now, suppose %(G1 , . . . , G<) is any nonzero polynomial inC(<, B, B) but %(&:Jℓ , :, AKNW) ≡ 0,

then Lemma 2.11 states that there is a nonzero polynomial %̃(I1 , . . . , I:) such that

13Here log
◦8

denotes 8 iterated applications of log, i. e. log
◦3 B = log log log B.
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• %̃ has degree at most B3
, and is a multiple of &:

• %̃ is computed by formulas of size at most B3 · BA2/: = B4

However, Observation 2.8 asserts that %̃ must require formulas of size at least B5
and hence it

must be the case that %(&:Jℓ , :, AKNW) . 0.

Let %′(I1 , . . . , Iℓ ) = %(&:Jℓ , :, AKNW). This is an ℓ -variate nonzero polynomial of degree at

most B · deg(&:) ≤ B3
and is computable by formulas of size B2 = B · B20,(ℓ )C(B) ≤ B20,(ℓ )C(B)

. Since

20,(ℓ )C(B) ≤ log< ≤ log B, we have that C(B2) ≤ 2C(B). Using the hypothesis for (:2 = ℓ , B2) an
explicit hitting set for C(ℓ , B2 , B2) of size at most B

,(ℓ )C(B2)
2

which can be bounded above as follows:

B
,(ℓ )C(B2)
2

≤ B2·,(ℓ )C(B)
2

≤ B20·,(ℓ )C(B)·2·,(ℓ )·C(B)

≤ B400·,(ℓ )2·C(B)2 ≤ B,′(<)C′(B).

Therefore, we have an explicit hitting set for C(<, B, B) of size at most B,
′(<)C′(B)

. �

Intuitively, the above lemma states that if ,(:)C(B) is substantially smaller than :, then explicit

hitting sets of size B,(:)C(B) for C(:, B, B) can be used to obtain an B,
′(<)C′(B)

hitting set for C(<, B, B)
where < is exponentially larger than : (if B is not too large in comparison to <). Suppose

,′(<)C′(B) is also substantially smaller than < (which would roughly translate to ,(:)C(B) being
much smaller than :; say something like log log :), then we may be in a position to use the

lemma again to get an even better hitting set.

The following theorem sets up the parameters suitably when we are in a position to use the

above lemma multiple times.

Theorem 4.2. Let ,0 , C0 : ℕ→ ℕ be non-decreasing functions with ,0(<) ≤ <1/4 and C0(B) ≤ log B.
Let ,1 , ,2 , . . . : ℕ → ℕ and C1 , C2 , . . . : ℕ → ℕ be defined as ,8+1(<) = 400 ·

(
,8

(
(log<)4

) )
2 and

C8+1(B) = (C(B))2. Furthermore, let !0 : ℕ → ℕ as !1(G) = (log G)2 and !8+1(G) = (!8((log G)4))2 for
all 8 ≥ 1.

Suppose for every <, B ≥ 1 we have an explicit hitting set for C(<, B, B) of size at most B,0(<)·C0(B).
Let A<,B ≥ 1 be the largest index such that

• ,A(G) ≤ G1/4 and CA(Glog G) ≤ 2 · CA(G) for all G ≥ 1,

• 100 · ,A(<) · CA(B) ≤ !A(<).

Then for any 9 ≤ A<,B , we have an explicit hitting set for C(<, B, B) of size at most B, 9(<)C 9(B).
In particular, C(B, B, B) has an explicit hitting set of size B!A (B) for A = AB,B .
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Although the above theorem is stated in a general form, it would be instructive to just

consider nice functions of the form ,0(B) = B0.1
. In this case, it can be seen that

,8(B) = 2
2
$(8) · poly(log

◦8 B),
C8(B) = (log

◦3 B)28 , and
!8(B) = 2

2
$(8) · poly(log

◦8 B),

where ,1(B) � !1(B) but, certainly for 8 = log
∗ B we have ,8(B) > !8(B). If C0 is the constant

function, then we are essentially in the same regime as in the previous sections, so we get

AB,B = Θ(log
∗ B), and we recover Theorem 1.2. However, if suppose C0(B) = log

◦3 B (where log
◦8 B

is the iterated logarithm function, i. e. log
◦3 B = log log log B), then C3(B) = (log

◦3 B)23

> !3(B) and
hence AB,B = 2. Nevertheless, the above theorem yields an explicit hitting set of size C(B, B, B) of
size at most Bpoly log

◦2 B
which is still substantially better than B,0(B)C0(B) > BB

0.1
.

Proof. We will prove the theorem by induction on 9. For any <, B, the base case of 9 = 0 trivially

satisfied by the hypothesis of the theorem and hence there is nothing to prove.

Inductive step (9 → 9 + 1): Suppose , 9+1(G) ≤ G1/4
and C 9+1(Glog G) ≤ 2 · C 9+1(G) for all G ≥ 1.

For each 8 ≤ 9 + 1, define D8 = {(<, B) : < ≤ B , 100 · ,8(<)C8(B) ≤ !8(<)}. By the induction

hypothesis, for every (:, B′) ∈ D9 we have an explicit hitting set for C(:, B′, B′) of size at most

B′, 9(:)C 9(B
′)
.

Fix any (<, B) ∈ D9+1. To construct the explicit hitting set for C(<, B, B), we will use

Lemma 4.1. In order to do that, we need to assert the following claims:

(a) (<, B) satisfy equation (4.1) (for , = , 9 and C = C 9),

(b) C(ℓ , B1 , B1), for ℓ = (log<)4 and B = B5
, has an explicit hitting set of size at most B

, 9(ℓ )C 9(B)
1

, and

(c) C(ℓ , B2 , B2), for ℓ = (log<)4 and B2 = B20, 9(ℓ )C 9(B)
, has an explicit hitting set of size at most

B
, 9(ℓ )C 9(B2)
2

.

Pf of Claim (a): (<, B) ∈ D9+1 implies that

20 · , 9((log<)4) · C 9(B) = 20 ·
(
, 9+1(<)

400

)
1/2
·
(
C 9+1(<)

)
1/2

=
(
, 9+1(<)C 9+1(B)

)
1/2

≤ 1

10

· ! 9+1(<)1/2 ≤ log<.
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Pf of Claim (b): If ℓ = (log<)4 and B1 = B5
,

100 · , 9(ℓ )C 9(B1) ≤ 200 · , 9(ℓ )C 9(B)
= 10 ·

(
, 9+1(<) · C 9+1(B)

)
1/2

≤ 10

10

· ! 9+1(<)1/2

= ! 9(ℓ ).

Hence (ℓ , B1) ∈ D9 and by the inductive hypothesis, we have an explicit hitting set for C(ℓ , B1 , B1)
of size at most B

, 9(ℓ )C 9(B1)
1

.

Pf of Claim (c): For ℓ = (log<)4 and B2 = B20, 9(ℓ )C 9(B)
, note that Claim (a) shows that 20, 9(ℓ )C 9(B) ≤

log< ≤ log B and hence C 9(B2) ≤ 2C 9(B). Therefore,

100 · , 9(ℓ )C 9(B2) ≤ 200 · , 9(ℓ )C 9(B)
= 10 ·

(
, 9+1(<) · C 9+1(B)

)
1/2

=
(
! 9+1(<)

)
1/2 ≤ ! 9(ℓ ).

Hence (ℓ , B2) ∈ D9 and, by the induction hypothesis, we have an explicit hitting set for C(ℓ , B2 , B2)
of size at most B

, 9(ℓ )C 9(B2)
2

.

Using Lemma 4.1, we have that C(<, B, B) has an explicit hitting set of size B, 9+1(<)C 9+1(B)
. �

5 Open problems

We conclude with some open questions.

• A natural question in the spirit of the results in this paper, and those in [2] seems to be the

following: Can we hope to bootstrap lower bounds? In particular, can we hope to start

from amildly non-trivial lower bound for general algebraic circuits (e. g., superlinear or just

superpolynomial), and hope to amplify it to get a stronger lower bound (superpolynomial

or truly exponential, respectively). In the context of non-commutative algebraic circuits,

Carmosino, Impagliazzo, Lovett and Mihajlin [8] recently showed such results, but no

such result appears to be known for commutative algebraic circuits.

• It would also be interesting to understand if it is possible to bootstrap white box PIT

algorithms. The proofs in this paper strongly rely on the fact that we have a non-trivial

blackbox derandomization of PIT.

• Kabanets and Impagliazzo [18] show that given a polynomial family which requires

exponential-size circuits, there is a blackbox PIT algorithm which runs in quasipolynomial

time (exp(poly(log =))) on circuits of size poly(=) and degree poly(=), where = is the

number of variables. Thus, even with the best hardness possible, the running time of the
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PIT algorithm obtained is still no better than quasipolynomially bounded. The question is

to improve this running time to get a better upper bound than that obtained in [18]. In

particular, can we hope to get a deterministic polynomial-time PIT assuming that we have

explicit polynomial families of exponential hardness. This seems to be closely related to

the question about bootstrapping lower bounds.

Since the first version of this paper appeared, there has been some work related to the

problems studied in this paper. Specifically, Guo, Kumar, Saptharishi and Solomon [14] showed

that it is possible to bootstrap even explicit hitting sets of size B= − 1 for =-variate circuits of

size B and degree B, for a constant =, to obtain polynomial-time PIT for B-variate circuits of

size and degree B. The proof in [14] goes via the direct construction of a hitting set generator

with constant seed length assuming a sufficiently strong hardness assumption, thereby making

progress on the last open question state above as well. One caveat of the results in [14] is that

the underlying field needs to be of sufficiently large characteristic or characteristic zero. Proving

analogous results over fields of small characteristic continues to be a very interesting open

problem.
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