
THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51
www.theoryofcomputing.org

Shrinkage under Random Projections,

and Cubic Formula Lower Bounds

for GI0

Yuval Filmus
∗

Or Meir
†

Avishay Tal

Received February 19, 2021; Revised December 28, 2021; Published December 5, 2023

Abstract. Håstad showed that any De Morgan formula (composed of AND, OR

and NOT gates) shrinks by a factor of $̃(?2) under a random restriction that leaves

each variable alive independently with probability ? [SICOMP, 1998]. Using this

result, he gave an Ω̃(=3) formula size lower bound for the Andreev function, which,

up to lower order improvements, remains the state-of-the-art lower bound for any

explicit function.

In this paper, we extend the shrinkage result of Håstad to hold under a far wider

family of random restrictions and their generalization — random projections. Based

on our shrinkage results, we obtain an Ω̃(=3) formula size lower bound for an explicit

function computable in GI0
. This improves upon the best known formula size lower

bounds for GI0
, that were only quadratic prior to our work. In addition, we prove

that the KRW conjecture [Karchmer et al., Computational Complexity 5(3/4), 1995]

holds for inner functions for which the unweighted quantum adversary bound is

tight. In particular, this holds for inner functions with a tight Khrapchenko bound.

Our random projections are tailor-made to the function’s structure so that the

function maintains structure even under projection — using such projections is

necessary, as standard random restrictions simplify GI0
circuits. In contrast, we

show that any De Morgan formula shrinks by a quadratic factor under our random

projections, allowing us to prove the cubic lower bound.

An extended abstract of this article appeared in the Proceeding of the 12th Innovations in Theoretical Computer

Science Conference (ITCS’21).

∗
Taub Fellow — supported by the Taub Foundations. The research was funded by ISF grant 1337/16.

†
Partially supported by the Israel Science Foundation (grant No. 1445/16).

© 2023 Yuval Filmus, Or Meir, and Avishay Tal
cb Licensed under a Creative Commons Attribution License (CC-BY) DOI: 10.4086/toc.2023.v019a007

http://dx.doi.org/10.4086/toc
https://doi.org/10.4230/LIPIcs.ITCS.2021.89
https://doi.org/10.4230/LIPIcs.ITCS.2021.89
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2023.v019a007

YUVAL FILMUS, OR MEIR, AND AVISHAY TAL

Our proof techniques build on Håstad’s proof for the simpler case of balanced

formulas. This allows for a significantly simpler proof at the cost of slightly worse

parameters. As such, when specialized to the case of ?-random restrictions, our

proof can be used as an exposition of Håstad’s result.

ACM Classification: F.1.1

AMS Classification: 68Q06

Key words and phrases: circuit complexity, lower bounds, shrinkage, formulas, formula

complexity, KRW conjecture

1 Introduction

1.1 Background

Is there an efficiently solvable computational task that does not admit an efficient parallel

algorithm? A formalization of this question asks, is P * NC1

? The answer is still unknown. The

question can be rephrased as follows (ignoring issues of uniformity): is there a Boolean function

in P that does not have a (De Morgan) formula of polynomial size? (We define De Morgan

formulas formally in Section 2; informally, these are formulas composed of AND, OR and NOT

gates.)

The history of formula lower bounds for functions in P goes back to the 1960s, with the

seminal result of Subbotovskaya [55] that introduced the technique of random restrictions.

Subbotovskaya showed that the Parity function on = variables requires formulas of size at least

Ω(=1.5). Khrapchenko [33], using a different proof technique, showed that in fact the Parity

function on = variables requires formulas of size Θ(=2). Later, Andreev [4] came up with a

new explicit function (now known as the Andreev function) for which he was able to obtain an

Ω(=2.5) size lower bound. This lower bound was subsequently improved in [29, 44, 23, 56] to

=3−>(1)
.

The line of work initiated by Subbotovskaya and Andreev relies on the shrinkage of formulas

under ?-random restrictions. A ?-random restriction is a randomly chosen partial assignment

to the inputs of a function. Set a parameter ? ∈ (0, 1). We fix each variable independently with

probability 1 − ? to a uniformly random bit, and we keep the variable alive with probability ?.

Under such a restriction, formulas shrink (in expectation) by a factor more significant than ?.

Subbotovskaya showed that formulas shrink to at most ?1.5
times their original size, whereas

subsequent work [44, 29] improved the bound to ?1.55
and then to ?1.63

. Finally, Håstad [23]

showed that the shrinkage exponent of formulas is 2, or in other words, that formulas shrink by

a factor of ?2−>(1)
under ?-random restrictions. Tal [56] improved the shrinkage factor to $(?2)

— obtaining a tight result, as exhibited by the Parity function.

In a nutshell, shrinkage results are useful for proving lower bounds as long as the explicit

function being analyzed maintains structure under such restrictions and does not trivialize. For

example, the Parity function does not become constant as long as at least one variable remains

alive. Thus any formula � that computes Parity must be of at least quadratic size, or else the

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 2

http://dx.doi.org/10.4086/toc

SHRINKAGE UNDER RANDOM PROJECTIONS

formula � under restriction, keeping each variable alive with probability 100/=, would likely

become a constant function, whereas Parity would not. Andreev’s idea is similar, though he

manages to construct a function such that under a random restriction keeping only Θ(log =) of
the variables, the formula size should be at least Ω̃(=) (in expectation). This ultimately gives the

nearly cubic lower bound.

1.1.1 The KRW Conjecture

Despite much effort, proving P * NC1

, and even just breaking the cubic barrier in formula lower

bounds, have remained a challenge for more than two decades. An approach to solve the P
versus NC1

problem was suggested by Karchmer, Raz and Wigderson [31]. They conjectured

that when composing two Boolean functions, 5 and ,, the formula size of the resulting function,

5 � ,, is (roughly) the product of the formula sizes of 5 and ,.1 We will refer to this conjecture

as the “KRW conjecture”. Under the KRW conjecture (and even under weaker variants of it),

[31] constructed a function in P with no polynomial-size formulas. It remains a major open

challenge to settle the KRW conjecture.

A few special cases of the KRW conjecture are known to be true. The conjecture holds when

either 5 or , is the AND or the OR function. Håstad’s result [23] and its improvement [56]

show that the conjecture holds when the inner function , is the Parity function and the outer

function 5 is any function. This gives an alternative explanation to the =3−>(1)
lower bound for

the Andreev function. Indeed, the Andreev function is at least as hard as the composition of

a maximally hard function 5 on log = bits and , = Parity=/log = , where the formula size of 5 is

Ω̃(=) and the formula size of Parity=/log = is Θ(=2/log
2 =). Since the KRW conjecture holds for

this special case, the formula size of the Andreev function is at least Ω̃(=3). In other words, the

state-of-the-art formula size lower bounds for explicit functions follow from a special case of the

KRW conjecture — the case in which , is the Parity function. Moreover, this special case follows

from the shrinkage offormulas under ?-random restrictions.

1.1.2 Bottom-up versus top-down techniques

Whereas random restrictions are a “bottom-up” proof technique [24], a different line of work

suggested a “top-down" approach using the language of communication complexity. The

connection between formula size and communication complexity was introduced in the seminal

paper by Karchmer and Wigderson [32]. They defined for any Boolean function 5 a two-party

communication problem KW 5 : Alice gets an input G such that 5 (G) = 1, and Bob gets an input H

such that 5 (H) = 0. Their goal is to identify a coordinate 8 on which G8 ≠ H8 , while minimizing

their communication. It turns out that there is a one-to-one correspondence between any

protocol tree solving KW 5 and any formula computing the function 5 . Since protocols naturally

traverse the tree from root to leaf, proving lower bounds on their size or depth is done usually

in a top-down fashion. This framework has proven to be very useful in proving formula lower

1More precisely, the original KRW conjecture [31] concerns depth complexity rather than formula complexity.

The variant of the conjecture for formula complexity, which is discussed above, was posed in [19].

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 3

http://dx.doi.org/10.4086/toc

YUVAL FILMUS, OR MEIR, AND AVISHAY TAL

bounds in the monotone setting (see, e. g., [32, 20, 47, 31, 46, 21, 45]) and in studying the KRW

conjecture (see, e. g., [31, 14, 26, 19, 13, 34, 41, 12, 42]). Moreover, in a recent paper [13], Dinur

and Meir were able to reprove Håstad’s cubic lower bound using the framework of Karchmer

and Wigderson. As Dinur and Meir’s proof showed that top-down techniques can replicate

Håstad’s cubic lower bound, a natural question (which motivated this project) arose:

Are top-down techniques superior to bottom-up techniques?

Towards that, we focused on a candidate problem: prove a cubic lower bound for an explicit

function in GI0
.2 Based on the work of Dinur and Meir [13], we suspected that such a lower

bound could be achieved using top-down techniques. We were also certain that the problem

cannot be solved using the random restriction technique. Indeed, in order to prove a lower

bound on a function 5 using random restrictions, one should argue that 5 remains hard under a

random restriction, however, it is well-known that functions in GI0
trivialize under ?-random

restrictions [1, 16, 57, 22]. Based on this intuition, surely random restrictions cannot show that a

function in GI0
requires cubic size. Our intuition turned out to be false.

1.2 Our results

In this article, we construct an explicit function in GI0
which requiresformulas of size =3−>(1)

.

Surprisingly, our proof is conducted via the bottom-up technique of random projections, which

is a generalization of random restrictions (more details below).

Theorem 1.1. There exists a family of Boolean functions ℎ= : {0, 1}= → {0, 1} for = ∈ ℕ such that

1. ℎ= can be computed by uniform depth-4 unbounded fan-in formulas of size $(=3).

2. The formula size of ℎ= is at least =3−>(1).

Prior to our work, the best formula size lower bounds for an explicit function in GI0
were

only quadratic [43, 10, 30, 6].

Our hard function is a variant of the Andreev function. More specifically, recall that the

Andreev function is based on the composition 5 � ,, where 5 is a maximally hard function and

, is the Parity function. Since Parity is not in GI0
, we cannot take , to be the Parity function in

our construction. Instead, our hard function is obtained by replacing the Parity function with

the Surjectivity function of Beame and Machmouchi [6].

As in the case of the Andreev function, we establish the hardness of our function by proving

an appropriate special case of the KRW conjecture. To this end, we introduce a generalization of

the unweighted adversary method [2], called the soft-adversary bound, which we denote AdvB(,)
(see Section 7.1). We prove the KRW conjecture for the special case in which the outer function 5

is any function, and , is a function whose formula complexity is bounded tightly by the soft-

adversary bound. We then obtain Theorem 1.1 by applying this version of the KRW conjecture

to the case where , is the Surjectivity function. We note that our KRW result holds in particular

2Recall that GI0
is the class of functions computed by constant depth polynomial size circuits composed of AND

and OR gates of unbounded fan-in, with variables or their negation at the leaves.

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 4

http://dx.doi.org/10.4086/toc

SHRINKAGE UNDER RANDOM PROJECTIONS

for functions , with a large Khrapchenko bound, which in turn implies the known lower bounds

in the cases where , is the Parity function [23] and the Majority function [17].

Our proof of the special case of the KRW conjecture follows the methodology of Håstad [23],

who proved the special case in which , is Parity on < variables. Håstad proved that formulas

shrink by a factor of (roughly) ?2
under ?-random restrictions. Choosing ? = 1/< shrinks a

formula for 5 � , by a factor of roughly <2
, which coincides with the formula complexity of ,.

On the other hand, on average each copy of , simplifies to a single input variable, and so 5 � ,
simplifies to 5 . This shows that !(5 � ,) & !(5) · !(,).

Our main technical contribution is a new shrinkage theorem that works in a far wider range

of scenarios than just ?-random restrictions: A random projection is a generalization of a random

restriction in which each of the input variables G1 , . . . , G= may either be fixed to a constant or be

replaced with a literal from the set H1 , . . . , H< , H1 , . . . , H< where H1 , . . . , H< are new variables.

Given a function , with soft-adversary bound AdvB(,), we construct a random projection which,

on the one hand, shrinks formulas by a factor of AdvB(,), and on the other hand, simplifies 5 �,
to 5 . We thus show that !(5 � ,) & !(5) · AdvB(,), and in particular, if AdvB(,) ≈ !(,), then
!(5 � ,) & !(5) · !(,), just as in Håstad’s proof. Our random projections are tailored specifically

to the structure of the function 5 � ,, ensuring that 5 � , simplifies to 5 under projection. This

enables us to overcome the aforementioned difficulty. In contrast, ?-random restrictions that do

not respect the structure of 5 � , would likely result in a restricted function that is much simpler

than 5 and in fact would be a constant function with high probability.

Our shrinkage theorem applies more generally to two types of random projections, which

we call fixing projections and hiding projections. Roughly speaking, fixing projections are random

projections in which substituting a constant for one of the variables H1 , . . . , H< results in a

projection that is much more probable. Hiding projections are random projections in which

substituting a constant for a variable H 9 hides which of the input variables G1 , . . . , G= were

mapped to {H 9 , H 9} before the substitution. We note that our shrinkage theorem for fixing

projections captures Håstad’s result for ?-random restrictions as a special case.

The proof of our shrinkage theorem is based on Håstad’s proof [23], but also simplifies it. In

particular, we take the simpler argument that Håstad uses for the special case of completely

balanced trees, and adapt it to the general case. As such, our proof avoids a complicated case

analysis, at the cost of slightly worse bounds. Using our bounds, it is nevertheless easy to obtain

the =3−>(1)
lower bound for the Andreev function. Therefore, one can see the specialization of

our shrinkage result to ?-random restrictions as an exposition of Håstad’s cubic lower bound.

1.2.1 An example: our techniques when specialized to 5 �Majority<

To illustrate our choice of random projections, we present its instantiation to the special case of

5 �,, where 5 : {0, 1}: → {0, 1} is non-constant and , = Majority< for some odd integer<. In this

case, the input variables to 5 � , are composed of : disjoint blocks, �1 , . . . , �: , each containing

< variables. We use the random projection that for each block �8 = {G<(8−1)+1
, . . . , G<8}, picks

one variable in the block �8 uniformly at random, projects this variable to the new variable H8 ,

and fixes the rest of the variables in the block in a balanced way so that the number of zeros and

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 5

http://dx.doi.org/10.4086/toc

YUVAL FILMUS, OR MEIR, AND AVISHAY TAL

ones in the block is equal (i. e., we have exactly (< − 1)/2 zeros and (< − 1)/2 ones). It is not hard

to see that under this choice, 5 � , simplifies to 5 . On the other hand, we show that this choice

of random projections shrinks the formula complexity by a factor of ≈ 1/<2
. Combining the

two together, we get that !(5 �Majority<) & !(5) · <2
. Note that in this distribution of random

projections, the different coordinates are not independent of one another, and this feature allows

us to maintain structure.

1.3 Related work

Our technique of using tailor-made random projections was inspired by the celebrated result of

Rossman, Servedio, and Tan [25] that proved an average-case depth hierarchy. In fact, the idea

to use tailor-made random restrictions goes back to Håstad’s thesis [27, Chapter 6.2]. Similar to

our case, in [27, 25], ?-random restrictions are too crude to separate depth 3 from depth 3 + 1

circuits. Given a circuit � of depth 3 + 1, the main challenge is to construct a distribution of

random restrictions or projections (tailored to the circuit �) that on the one hand maintains

structure for �, but on the other hand simplify any depth 3 circuit �′.

1.4 Paper outline

The paper starts with brief preliminaries in Section 2. Then, in Section 3, we define the notions of

fixing and hiding projections, state the corresponding shrinkage theorems, and sketch how they

can be used to prove a cubic formula lower bound for GI0
. We prove the shrinkage theorems

for fixing and hiding projections in Sections 4 and 5, respectively. In Section 6 we provide a brief

interlude on the join operation for projections. The quantum adversary bound, the Khrapchenko

bound, and their relation to hiding projections are discussed in Section 7. Finally, Section 8

contains a proof of Theorem 1.1, as a corollary of a more general result which is a special case of

the KRW conjecture. In the same section we also rederive the cubic lower bound on Andreev’s

function, and the cubic lower bound on the Majority-based variant considered in [17].

2 Preliminaries

Throughout the paper, we use bold letters to denote random variables. For any = ∈ ℕ, we

denote by [=] the set {1, . . . , =}. Given a bit � ∈ {0, 1}, we denote its negation by �. We

assume familiarity with the basic definitions of communication complexity (see, e. g., [37]). All

logarithms in this paper are base 2.

Definition 2.1. A (De Morgan) formula (with bounded fan-in) is a binary tree, whose leaves are

labeled with literals from the set {G1 , G1 , . . . , G= , G=}, and whose internal vertices are labeled as

AND (∧) or OR (∨) gates. The size of a formula), denoted size()), is the number of leaves in the

tree. The depth of the formula is the depth of the tree. A formula with unbounded fan-in is defined

similarly, but every internal vertex in the tree can have any number of children. Unless stated

explicitly otherwise, whenever we say “formula” we refer to a formula with bounded fan-in.

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 6

http://dx.doi.org/10.4086/toc

SHRINKAGE UNDER RANDOM PROJECTIONS

Definition 2.2. A formula) computes a Boolean function 5 : {0, 1}= → {0, 1} in the natural

way. The formula complexity of a Boolean function 5 : {0, 1}= → {0, 1}, denoted !(5), is the size
of the smallest formula that computes 5 . The depth complexity of 5 , denoted �(5), is the smallest

depth of a formula that computes 5 . For convenience, we define the size and depth of the

constant functions to be zero.

A basic property of formula complexity is that it is subadditive:

Fact 2.3. For every two functions 51 , 52 : {0, 1}= → {0, 1} we have !(51 ∧ 52) ≤ !(51) + !(52) and
!(51 ∨ 52) ≤ !(51) + !(52).

The following theorem shows that every small formula can be “balanced” to obtain a shallow

formula.

Theorem 2.4 (Formula balancing, [7], following [54, 8]). For every B ∈ ℕ and
 > 0, the following
holds: For every formula) of size B, there exists an equivalent formula)′ of depth at most $(2 1

 · log B)
and size at most B1+
 (where the constant inside the big-O notation does not depend on the choice of
).

Notation 2.5. With a slight abuse of notation, we will often identify a formula) with the

function it computes. In particular, the notation !()) denotes the formula complexity of the function
computed by), and not the size of) (which is denoted by size())).
Notation 2.6. Given a Boolean variable I, we denote by I0

and I1
the literals I and I, respectively.

In other words, I1 = I ⊕ 1.
Notation 2.7. Given a literal ℓ , we define var(ℓ) to be the underlying variable, that is, var(I) =
var(I) = I.
Notation 2.8. Let Π be a deterministic communication protocol that takes inputs fromA × ℬ,
and recall that the leaves of the protocol induce a partition ofA ×ℬ to combinatorial rectangles.

For every leaf ℓ ofΠ, we denote byAℓ ×ℬℓ the combinatorial rectangle that is associated with ℓ .

We use the framework of Karchmer–Wigerson relations [32], which relates the complexity

of 5 to the complexity of a related communication problem KW 5 .

Definition 2.9 ([32]). Let 5 : {0, 1}= → {0, 1} be a Boolean function. The Karchmer–Wigderson
relation of 5 , denoted KW 5 , is the following communication problem: The inputs of Alice and

Bob are strings 0 ∈ 5 −1(1) and 1 ∈ 5 −1(0), respectively, and their goal is to find a coordinate

8 ∈ [=] such that 08 ≠ 18 . Note that such a coordinate must exist since 5 −1(1) ∩ 5 −1(0) = ∅ and
hence 0 ≠ 1.

Theorem 2.10 ([32], see also [48]). Let 5 : {0, 1}= → {0, 1}. The communication complexity of KW 5

is equal to �(5), and the minimal number of leaves in a protocol that solves KW 5 is !(5).
We use the following two standard inequalities.

Fact 2.11 (the AM–GM inequality). If G, H ≥ 0 then √G · H ≤ G+H
2
.

Fact 2.12 (special case of Cauchy-Schwarz inequality). For every C non-negative real numbers
G1 , . . . , GC we have

√
G1 + . . . +

√
GC ≤

√
C · √G1 + . . . + GC .

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 7

http://dx.doi.org/10.4086/toc

YUVAL FILMUS, OR MEIR, AND AVISHAY TAL

3 Main results

In this section we define the notions of fixing and hiding projections and state their associated

shrinkage theorems (see Sections 3.1 and 3.2, respectively). We then sketch the proof of our

cubic formula lower bounds for GI0
assuming those theorems (see Section 3.3). We start by

defining projections and the relevant notation.

Definition 3.1. Let G1 , . . . , G= and H1 , . . . , H< be Boolean variables. A projection � from G1 , . . . , G=
to H1 , . . . , H< is a function from the set {G1 , . . . , G=} to the set {0, 1, H1 , H1 , . . . , H< , H<}. Given

such a projection � and a Boolean function 5 : {0, 1}= → {0, 1} over the variables G1 , . . . , G= , we

denote by 5 |� : {0, 1}< → {0, 1} the function obtained from 5 by substituting �(G8) for G8 for
each 8 ∈ [=] in the natural way. Unless stated explicitly otherwise, all projections in this section

are from G1 , . . . , G= to H1 , . . . , H< , and all functions from {0, 1}= to {0, 1} are over the variables
G1 , . . . , G= . A random projection is a distribution over projections.

Notation 3.2. Let � be a projection. For every 9 ∈ [<] and bit � ∈ {0, 1}, we denote by �H9←� the

projection that is obtained from � by substituting � for H 9 .

Notation 3.3. With a slight abuse of notation, if a projection �maps all the variables G1 , . . . , G=
to constants in {0, 1}, we will sometimes treat it as a binary string in {0, 1}= .

3.1 Fixing projections

Intuitively, a @-fixing projection is a random projection 0 in which for every variable G8 , the

probability that 0 maps a variable G8 to a literal H�
9
is much smaller than the probability that

0 fixes H 9 to a constant, regardless of the values that � assigns to the other variables. This property is

essentially the minimal property that is required in order to carry out the argument of Håstad

[23]. Formally, we define @-fixing projections as follows.

Definition 3.4. Let 0 ≤ @0 , @1 ≤ 1. We say that a random projection 0 is a (@0 , @1)-fixing projection
if for every projection �, every bit � ∈ {0, 1}, and every variable G8 , we have

Pr

[
0(G8) ∉ {0, 1} and 0var(0(G8))←� = �

]
≤ @� · Pr[0 = �] . (3.1)

For shorthand, we say that 0 is a @-fixing projection, for @ =
√
@0@1.

If needed, one can considerwithout loss of generality only variables G8 such that�(G8) ∈ {0, 1},
as otherwise Equation 3.1 holds trivially, with the left-hand side equaling zero.

Example 3.5. In order to get intuition for the definition of fixing projections, let us examine how

this definition applies to random restrictions. In our terms, a restriction is a projection from

G1 , . . . , G= to G1 , . . . , G= that maps every variable G8 either to itself or to {0, 1}. Suppose that 1 is
any distribution over restrictions, and that � is some fixed restriction. In this case, the condition

of being @-fixing can be rewritten as follows:

Pr[1(G8) = G8 and 1G8←� = �] ≤ @� · Pr[1 = �] .

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 8

http://dx.doi.org/10.4086/toc

SHRINKAGE UNDER RANDOM PROJECTIONS

Denote by 1′, �′ the restrictions obtained from 1, � by truncating G8 (i. e., 1′ = 1|{G1 ,...,G=}−{G8}).
Using this notation, we can rewrite the foregoing equation as

Pr[1(G8) = G8 and 1′ = �′ and 1G8←�(G8) = �(G8)] ≤ @� · Pr[1(G8) = �(G8) and 1′ = �′] .

Now, observe that it is always the case 1G8←�(G8) = �, and therefore the probability on the

left-hand side is non-zero only if �(G8) = �. Hence, we can restrict ourselves to the latter case,

and the foregoing equation can be rewritten again as

Pr[1(G8) = G8 and 1′ = �′] ≤ @� · Pr[1(G8) = � and 1′ = �′] .

Finally, if we divide both sides by Pr[1′ = �′], we obtain the following intuitive condition:

Pr[1(G8) = G8 | 1′ = �′] ≤ @� · Pr[1(G8) = � | 1′ = �′] .

This condition informally says the following: 1 is a fixing projection if the probability of leaving

G8 unfixed is at most @� times the probability of fixing it to �, and this holds regardless of what

the restriction assigns to the other variables.

In particular, it is now easy to see that the classic random restrictions are fixing projections.

Recall that a ?-random restriction fixes each variable independently with probability 1 − ? to

a random bit. Due to the independence of the different variables, the foregoing condition

simplifies to

Pr[1(G8) = G8] ≤ @� · Pr[1(G8) = �] ,
and it is easy to see that this condition is satisfied for @0 = @1 =

2?

1−? .

We prove the following shrinkage theorem for @-fixing projections, which is analogous to the

shrinkage theorem of [23] for random restrictions in the case of balanced formulas.

Theorem 3.6 (Shrinkage under fixing projections). Let) be a formula of size B and depth 3, and let
0 be a @-fixing projection. Then

E
[
!() |0)

]
= $

(
@2 · 32 · B + @ ·

√
B
)
.

We prove Theorem 3.6 in Section 4. It is instructive to compare our shrinkage theorem to the

shrinkage theorem by Håstad [23] for unbalanced formulas:

Theorem 3.7 ([23]). Let) be a formula of size B, and let 1 be a ?-random restriction. Then

E
[
!() |1)

]
= $

(
?2 ·

(
1 + log

3/2
(
min

{
1

?
, B

}))
· B + ? ·

√
B

)
.

Our Theorem 3.6 has somewhat worse parameters compared to Theorem 3.7: specifically,

the factor of 32
does not appear in Theorem 3.7. The reason is that the proof of [23] uses a fairly

complicated case analysis in order to avoid losing that factor, and we chose to skip this analysis

in order to obtain a simpler proof. We did not check if the factor of 32
in our result can be

avoided by using a similar case analysis. By applying formula balancing (Theorem 2.4) to our

shrinkage theorem, we can obtain the following result, which is independent of the depth of the

formula.

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 9

http://dx.doi.org/10.4086/toc

YUVAL FILMUS, OR MEIR, AND AVISHAY TAL

Corollary 3.8. Let 5 : {0, 1}= → {0, 1} be a function with formula complexity B, and let 0 be a @-fixing
projection. Then

E [!(5 |0)] = @2 · B
1+$

(
1√

log B

)
+ @ · B

1/2+$
(

1√
log B

)
.

Proof. By assumption, there exists a formula) of size B that computes 5 . We balance the

formula) by applying Theorem 2.4 with
 = 1√
log B

, and obtain a new formula)′ that

computes 5 and has size B
1+ 1√

log B
and depth $(2

√
log B · log B) = B

$(1√
log B
)
. The required result

now follows by applying Theorem 3.6 to)′. �

3.2 Hiding projections

Intuitively, a hiding projection is a random projection 0 in which, when given 0H9←�, it is hard

to tell in which locations the variable H 9 appears in 0. Formally, we define @-hiding projections

as follows.

Definition 3.9. Let 0 ≤ @0 , @1 ≤ 1. We say that a random projection 0 is a (@0 , @1)-hiding projection
if for every projection �, every bit � ∈ {0, 1}, and all variables G8 , H9 , we have

Pr

[
0(G8) ∈

{
H 9 , H 9

} �� 0H9←� = �
]
≤ @� ,

whenever the event conditioned on has positive probability. For shorthand, we say that 0 is a

@-hiding projection, for @ =
√
@0@1.

To illustrate the definition, consider the following natural random restriction: given = variables

G1 , . . . , G= , the restriction chooses a set of < variables uniformly at random, and fixes all the

other variables to random bits. This restriction is not captured by the notion of ?-random

restrictions or by fixing projections, but as we demonstrate next, it can be implemented by

hiding projections. We start with the simple case of < = 1, and then consider the general case.

Example 3.10. In order to implement the case of < = 1, consider the random projection 0
from G1 , . . . , G= to H that is defined as follows: the projection 0 chooses an index i ∈ [=] and
a bit 3 ∈ {0, 1} uniformly at random, sets 0(Gi) = H3, and sets 0(G8′) to a random bit for all

8′ ∈ [=] \ {i}. It is clear that 0 is essentially equivalent to the random restriction described

above for < = 1. We claim that 0 is a
1

= -hiding projection. To see this, observe that for every

bit � ∈ {0, 1}, the projection 0H←� is a uniformly distributed string in {0, 1}= , and moreover, this

is true conditioned on any possible value of i. In particular, the random variable i is independent
of 0H←�. Therefore, for every projection � ∈ {0, 1}= and index 8 ∈ [=]we have

Pr

[
0(G8) ∈ {H, H}

�� 0H←� = �
]
= Pr

[
i = 8

�� 0H←� = �
]
= Pr[i = 8] = 1

=
,

so 0 satisfies the definition of a (@0 , @1)-hiding projection with @0 = @1 =
1

= . Intuitively, given

0H←�, one cannot guess the original location of H in 0 better than a random guess.

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 10

http://dx.doi.org/10.4086/toc

SHRINKAGE UNDER RANDOM PROJECTIONS

Example 3.11. We turn to consider the case of a general < ∈ ℕ. Let 0 be the random projection

from G1 , . . . , G= to H1 , . . . , H< that is defined as follows: the projection 0 chooses < distinct

indices i1 , . . . , i< ∈ [=] and < bits 31 , . . . , 3< ∈ {0, 1} uniformly at random, sets 0(Gi 9) = H
39
9
for

every 9 ∈ [<], and sets all the other variables G8 to random bits. It is clear that 0 is essentially

equivalent to the random projection described above. We show that 0 is a
1

=−<+1
-hiding

projection. To this end, we should show that for every 8 ∈ [=], 9 ∈ [<], and � ∈ {0, 1} we have

Pr

[
0(G8) ∈

{
H 9 , H 9

} �� 0H9←� = �
]
≤ 1

= − < + 1

.

For simplicity of notation, we focus on the case where 9 = <. Observe that 0H<←� reveals

the values of i1 , . . . , i<−1, and the projection of 0H<←� on the remaining = − < + 1 indices

is uniform over {0, 1}=−<+1
. Moreover, the latter assertion remains true conditioned on any

possible value of i< (which must be different from the known values of i1 , . . . , i<−1). Therefore

given i1 , . . . , i<−1, the random variable i< (ranging over all indices other than i1 , . . . , i<−1)

is independent of the projection of 0H<←� on the = − < + 1 indices other than i1 , . . . , i<−1.

It follows that for every projection � in the support of 0H<←� and every index 8 ∈ [=], if
0(G81) = H

31
1
, . . . ,0(G8<−1

) = H3<−1

<−1
then:

Pr

[
0(G8) ∈ {H< , H<}

�� 0H<←� = �
]
= Pr

[
i< = 8

�� 0H<←� = �
]

= Pr[i< = 8 | i1 = 81 , . . . , i<−1 = 8<−1] ≤
1

= − < + 1

,

as required.

In Section 5, we prove the following shrinkage theorem for hiding projections.

Theorem 3.12 (Shrinkage under hiding projections). Let) be a formula of size B and depth 3, and
let 0 be a @-hiding projection. Then

E
[
!() |0)

]
= $

(
<4 · @2 · 32 · B + <2 · @ ·

√
B
)
.

Applying formula balancing, we can obtain an analog of Corollary 3.8, with an identical

proof.

Corollary 3.13. Let 5 : {0, 1}= → {0, 1} be a function with formula complexity B, and let 0 be a
@-hiding projection. Then

E [!(5 |0)] = <4 · @2 · B
1+$

(
1√

log B

)
+ <2 · @ · B

1

2
+$

(
1√

log B

)
.

Remark 3.14. Note that Theorem 3.12 loses a factor of <4
compared to Theorem 3.6. While this

loss might be large in general, it will be of no importance in our applications. The factor <4
can

be improved to <2
in our actual applications, as discussed in Section 5.1.

The following example shows that the loss of a factor of at least <2
is necessary for

Theorem 3.12. Let 5 = Parity= be the Parity function over G1 , . . . , G= , and note that the formula

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 11

http://dx.doi.org/10.4086/toc

YUVAL FILMUS, OR MEIR, AND AVISHAY TAL

complexity of 5 is B = Θ(=2). Let 0 be the random projection from Example 3.11, and recall

that it is a @-hiding projection for @ = 1

=−<+1
. Then, 5 |0 is the Parity function over < bits, and

therefore its formula complexity is Θ(<2). It follows that when < ≤ =/2,

E [!(5 |0)] = Θ(<2) = Θ(<2 · @2 · B).

3.3 Sketch: Cubic formula lower bound for GI0

We now sketch how our shrinkage theorems can be used to prove the cubic formula lower

bound for GI0
. We start by sketching how our shrinkage theorems can be used to reprove a

quadratic formula lower bound for the surjectivity function Surj (originally due to [6]). Then,

we sketch a lower bound for compositions of the form 5 � Surj, where 5 is an arbitrary function.

Finally, we combine the latter bound with an idea of Andreev [4] to obtain a cubic lower bound

for an explicit function in GI0
. We note that the first step is the key idea of the proof, whereas

the two latter steps are relatively standard. A formal proof following this sketch can be found in

Section 8.

3.3.1 Lower bound for the surjectivity function

The surjectivity function Surj= : {0, 1}= → {0, 1} [6] takes as input a list of A numbers in [(] for
some (∈ ℕ, encoded in binary, and outputs 1 if and only if all the numbers in [(] appear in
the list. For our purposes, we write (′ = (− 2 and set A = 3

2
· (′ + 2. We sketch a proof that

!(Surj=) ≈ Ω((2). Since the input length of Surj= , when measured in bits, is = = $((log (), this
implies that !(Surj=) ≈ Ω(=2

log
2 =
).

To this end, we construct a random projection 0 for Surj= that maps the input variables

G1 , . . . , G= to a single variable H as follows: We choose two distinct numbers i , j ∈ [(] at
random, and then partition the remaining (− 2 numbers at random to two sets G and H of size

1

2
((− 2) = 1

2
(′ each. Then, we create a list of A = 3

2
· (′ + 2 numbers in [(] as follows:

1. Initially, all the places in the list are vacant.

2. We put each of the
1

2
(′ + 1 numbers in G ∪ {j} at a single random vacant place in the list.

3. We put each of the
1

2
(′ numbers in H in two random vacant places in the list (for a total of

(′ places).

4. Note that so far we filled
3

2
(′ + 1 = A − 1 vacant places in the list. The remaining vacant

place in the list is left empty.

We set 0 such that it fixes all the inputs variables G1 , . . . , G= to constants according to the list

we chose, except for the variables corresponding to the empty place in the list. Then, the

dlog (e binary input variables that correspond to the empty place are mapped to {0, 1, H, H} such
that if we substitute H = 1 we get the number i and if we substitute H = 0 we get the number j.
Observe that if H = 1, then the numbers in G ∪ {i , j} appear in the list exactly once and the

numbers in H appear exactly twice. On the other hand, if H = 0, then the numbers in G appear

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 12

http://dx.doi.org/10.4086/toc

SHRINKAGE UNDER RANDOM PROJECTIONS

in the list exactly once, the numbers in H ∪ {j} appear in the list exactly twice, and i does not
appear at all.

Observe that Surj= |0 = H. Indeed, if H = 1 then the foregoing list of numbers contains all

the numbers in [(] and thus Surj= takes the value 1, and if H = 0 then the list of numbers does

not contain i and thus Surj= takes the value 0. We claim that 0 is an $(1()-hiding projection.

Intuitively, if we substitute a value � ∈ {0, 1} in H, then given the resulting projection 0H←� it is

difficult to tell which input variables were mapped to H in the original projection 0. The reason
is that in order to tell that, one has to guess the empty place in the original list. To this end,

one has to guess i among the ≈ 1

2
(′ numbers that appear exactly once in the list (if � = 1) or to

guess j among the ≈ 1

2
(′ numbers that appear exactly twice in the list (if � = 0).

A bit more formally, observe that 0maps an input variable Gℎ to {H, H} only if Gℎ corresponds

to the empty place in the list of 0, and that 0H←0 and 0H←1 represent lists of A numbers in [(].
Hence, to find an upper bound on the probability that 0(Gℎ) ∈ {H, H} conditioned on the choice

of 0H←� (for � ∈ {0, 1}), we need an upper bound on the probability that a place in the list

represented by 0H←� was the empty place in the list of 0. We consider two cases:

• If � = 1, then the empty place in the list of 0 contains i in the list of 0H←1. From the

perspective of someone who only sees 0H←1, the number i could be any number among

the
1

2
(′ + 2 numbers that appear exactly once in the list of 0H←1. Therefore, conditioned

on 0H←1, the empty place in the list of 0 is uniformly distributed among
1

2
(′+2 places in the

list of 0H←1. Hence, any place in the list of 0H←1 has probability of at most
1

1

2
(′+2

= $
(

1

(

)
to be the empty place in 0.

• On the other hand, if � = 0, then the empty place in the list of 0 contains j in the list

of 0H←0. From the perspective of someone who only sees 0H←0, the number j could be

any number among the
1

2
(′ + 1 numbers that appear exactly twice in the list of 0H←0.

Therefore, conditioned on 0H←0, the empty place in the list of 0 is uniformly distributed

among 2 ·
(

1

2
(′ + 1

)
places in the list of 0H←0. Hence, any place in the list has probability

of at most
1

2·(1
2
(′+1) = $

(
1

(

)
to be the empty place in 0.

We showed that 0 is an $(1()-hiding projection, and therefore by our shrinkage theorem for

hiding projections (specifically, Corollary 3.13) we get that

E [!(Surj= |0)] .
1

(2

· !(Surj).

(We ignored the power of
1√

log !(Surj=)
from Corollary 3.13 in order to simplify the exposition.)

On the other hand, as explained above, we have Surj|� = H, and therefore !(Surj= |0) = 1. It

follows that !(Surj=) & (2
, as required.

We note that the above proof is a special case of a more general phenonmenon. Specifically,

in Section 7.1, we show that such a hiding projection can be constructed for every function that

has a large (unweighted) adversary bound. As [6] showed, the surjectivity function has such a

large adversary bound, and therefore we can construct a hiding projection for it.

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 13

http://dx.doi.org/10.4086/toc

YUVAL FILMUS, OR MEIR, AND AVISHAY TAL

3.3.2 Lower bound for 5 � Surj=

Let 5 : {0, 1}: → {0, 1} be any function, and let Surj= be defined as in the previous section.

The block-composition of 5 and Surj= , denoted 5 � Surj= , is the function that takes : inputs

G1 , . . . , G: ∈ {0, 1}= for Surj= and outputs

(5 � Surj=)(G1 , . . . , G:) = 5 (Surj(G1), . . . ,Surj(G:))

We sketch a proof that !(5 � Surj=) ≈ Ω
(
!(5) · =2

log
2 =

)
. Denote by G8 ,1 , . . . , G8 ,= the boolean

variables of the input G8 for each 8 ∈ [:]. Let 0 be the $(1()-hiding projection from the previous

section, and let 0: be random projection from G1,1 , . . . , G:,= to H1 , . . . , H: that is obtained by

joining : independent copies of 0. In Section 6 we show that the join operation maintains

the hiding property, and therefore 0: is an $(1()-hiding projection. Now, it is not hard to see

that 5 � Surj= |0: = 5 and therefore !(5 � Surj= |0:) = !(5). On the other hand, by our shrinkage

theorem for hiding projections (specifically, Corollary 3.13) we get that

E [!(5 � Surj= |0:)] .
1

(2

· !(5 � Surj=).

(Again, we ignored the power of
1√

log !(5�Surj=)
from Corollary 3.13 in order to simplify the

exposition.) It follows that

!(5) . 1

(2

· !(5 � Surj=),

and therefore

!(5 � Surj=) ≈ Ω
(
!(5) · (2

)
= Ω̃

(
!(5) · =2

)
,

as required.

3.3.3 Cubic lower bound for GI0

Let = = 2
: · (: + 1) and let ℎ= : {0, 1}= → {0, 1} be the function that takes as input the truth table

of a function 5 : {0, 1}: → {0, 1} and : inputs G1 , . . . , G: for Surj2: , and outputs

�(5 , G1 , . . . , G:) = (5 � Surj)(G1 , . . . , .G:)
As mentioned above, the function ℎ= is a variant of the Andreev function in which the parity

function is replaced with Surj. It is not hard to show that ℎ= is in GI0
(see Section 8.2 for details).

We sketch a proof that !(ℎ=) ≈ Ω(=3−>(1)).
To see that !(ℎ=) ≈ Ω(=3−>(1)), recall that by a standard counting argument, there exists a

function 5 : {0, 1}: → {0, 1} such that !(5) = Θ
(

2
:

log :

)
. We now hardwire 5 as an input to ℎ= ,

which turns the function ℎ= to the function 5 �Surj
2
: . By the lower bound we have for 5 �Surj

2
: ,

it follows that

!(�) ≥ !(5 � Surj) ≈ Ω̃
(
!(5) · 22:

)
= Ω̃

(
2
:

log :
· 22:

)
= Ω(=3−>(1)),

as required.

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 14

http://dx.doi.org/10.4086/toc

SHRINKAGE UNDER RANDOM PROJECTIONS

Remark 3.15. Note that in the proof of this result, we did not use the shrinkage theorem for fixing

projections — indeed, we only used the shrinkage theorem for hiding projections. However, the

proof of the shrinkage theorem for hiding projections itself relies on the shrinkage theorem for

fixing projections.

4 Proof of shrinkage theorem for fixing projections

In this section, we prove our the shrinkage theorem for fixing projections. Our proof is based on

the ideas of [23], but the presentation is different. We start by recalling the definition of fixing

projections and the theorem’s statement.

Definition 3.4. Let 0 ≤ @0 , @1 ≤ 1. We say that a random projection 0 is a (@0 , @1)-fixing projection
if for every projection �, every bit � ∈ {0, 1}, and every variable G8 , we have

Pr

[
0(G8) ∉ {0, 1} and 0var(0(G8))←� = �

]
≤ @� · Pr[0 = �] .

For shorthand, we say that 0 is a @-fixing projection, for @ =
√
@0@1.

Theorem 3.6 (Shrinkage under fixing projections). Let) be a formula of size B and depth 3, and let
0 be a @-fixing projection. Then

E
[
!() |0)

]
= $

(
@2 · 32 · B + @ ·

√
B
)
.

Fix a formula) of size B and depth 3, and let 0 be a @-fixing projection. We would like to get

an upper bound on the expectation of !() |0). As in [23], we start by giving an upper bound the

probability that the projection 0 shrinks a formula to size 1. Specifically, we prove the following

lemma in Section 4.1.

Lemma 4.1. Let 5 : {0, 1}= → {0, 1} be a Boolean function, and let 0 be a @-fixing projection. Then,

Pr[!(5 |0) = 1] ≤ @ ·
√
!(5).

Next, we show that to find and upper bound on the expectation of !() |0), it suffices to

give an upper bound on the probability that the projection 0 shrinks two formulas to size 1

simultaneously. In order to state this claim formally, we introduce some notation.

Notation 4.2. Let , be a gate of). We denote the depth of , in) by depth)(,), and omit) if it is

clear from context (the root has depth 0). If , is an internal gate, we denote the subformulas that

are rooted in its left and right children by left(,) and right(,), respectively. Here, by “internal

gate”, we refer to a gate which is an internal node of the tree, i. e., either an AND or an OR gate.

We prove the following lemma, which says that in order to upper-bound E
[
!() |0)

]
it suffices

to upper-bound, for every internal gate ,, the probability that left(,) and right(,) shrink to size 1

under 0.

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 15

http://dx.doi.org/10.4086/toc

YUVAL FILMUS, OR MEIR, AND AVISHAY TAL

Lemma 4.3. For every projection � it holds that

!() |�) ≤
∑

internal gate , of)

(depth(,) + 2) · 1{!(left(,)|�)=1and !(right(,)|�)=1} + 1!() |�)=1
.

We would like to use Lemmas 4.1 and 4.3 to prove the shrinkage theorem. As a warm-up,

let us make the simplifying assumption that for every two functions 51 , 52 : {0, 1}= → {0, 1}, the
events !(51 |0) = 1 and !(52 |0) = 1 are independent. If this were true, we could have given an

upper bound on E
[
!() |0)

]
as follows:

E
[
!() |0)

]
≤

∑
int. gate , of)

(depth(,) + 2) · E
[
1{!(left(,)|0)=1 and !(right(,)|0)=1}

]
+ E

[
1!() |�)=1

]
(Lemma 4.3)

≤ (3 + 2) ·
∑

int. gate , of)

Pr

[
!(left(,)|0) = 1 and !(right(,)|0) = 1

]
+ E

[
1!() |�)=1

]
() is of depth 3)

= (3 + 2) ·
∑

int. gate , of)

Pr[!(left(,)|0) = 1] · Pr

[
!(right(,)|0) = 1

]
+ E

[
1!() |�)=1

]
(simplifying assumption)

≤ (3 + 2) ·
∑

int. gate , of)

@2 ·
√
!(left(,)) · !(right(,)) + @ ·

√
B (Lemma 4.1)

≤ @2 · (3 + 2) ·
∑

int. gate , of)

(
!(left(,)) + !(right(,))

)
+ @ ·

√
B (AM–GM inequality)

≤ @2 · (3 + 2) ·
∑

int. gate , of)

(
size(left(,)) + size(right(,))

)
+ @ ·

√
B

= @2 · (3 + 2) ·
∑

int. gate , of)

size(,) + @ ·
√
B.

The last sum counts every leaf ℓ of) once for each internal ancestor of ℓ , so the last expression

is equal to

@2 · (3 + 2) ·
∑

leaf ℓ of)

depth(ℓ) + @ ·
√
B

≤ @2 · (3 + 2) ·
∑

leaf ℓ of)

3 + @ ·
√
B

= @2 · (3 + 2) · 3 · B + @ ·
√
B

= $
(
@2 · 32 · B + @ ·

√
B
)
,

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 16

http://dx.doi.org/10.4086/toc

SHRINKAGE UNDER RANDOM PROJECTIONS

which is the boundwewanted. However, the above calculation onlyworks under our simplifying

assumption, which is false: the events !(51 |0) = 1 and !(52 |0) = 1 will often be dependent. In

particular, in order for the foregoing calculation to work, we need the following inequality to

hold:

Pr[!(52 |0) = 1 | !(51 |0) = 1] ≤ @ ·
√
!(52).

This inequality holds under our simplifying assumption by Lemma 4.1, but may not hold in

general. Nevertheless, we prove the following similar statement in Section 4.2.

Lemma 4.4. Let 0 be a @-fixing projection. Let 51 , 52 : {0, 1}= → {0, 1}, let �, � ∈ {0, 1}, and let H 9 be
a variable. Then,

Pr

[
!(52 |0H9←�) = 1

��� 51 |0 = H�9] ≤ @ ·√!(52).
Intuitively, Lemma 4.4 breaks the dependency between the events !(51 |0) = 1 and !(52 |0) = 1

by fixing in 52 the single literal to which 51 has shrunk. We would now like to use Lemma 4.4 to

prove the theorem. To this end, we prove an appropriate variant of Lemma 4.3, which allows

using the projection �H9←� rather than � in the second function. This variant is motivated by

the following “one-variable simplification rules” of [23], which are easy to verify.

Fact 4.5 (one-variable simplification rules). Let ℎ : {0, 1}< → {0, 1} be a function over the variables
H1 , . . . , H< , and let � ∈ {0, 1}. We denote by ℎH9←� the function obtained from ℎ by setting H 9 to the
bit �. Then:

• The function H�
9
∨ ℎ is equal to the function H�

9
∨ ℎH9←�.

• The function H�
9
∧ ℎ is equal to the function H�

9
∧ ℎH9←�.

In order to use the simplification rules, we define, for every internal gate , of) and

projection �, an event ℰ, ,� as follows: if , is an OR gate, then ℰ, ,� is the event that there exists

some literal H�
9
(for � ∈ {0, 1}) such that left(,)|� = H�9 and !(right(,)|�H9←�) = 1. If , is an AND

gate, then ℰ, ,� is defined similarly, except that we replace �H9←� with �H9←�. We have the

following lemma, which is proved in Section 4.3.

Lemma 4.6. For every projection � we have

!() |�) ≤
∑

internal gate , of)

(depth(,) + 2) · 1ℰ, ,� + 1!() |�)=1
.

We can now use the following corollary of Lemma 4.4 to replace our simplifying assumption.

Corollary 4.7. For every internal gate , of) we have

Pr

[
ℰ, ,0

]
≤ @2 ·

√
!(left(,)) · !(right(,)).

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 17

http://dx.doi.org/10.4086/toc

YUVAL FILMUS, OR MEIR, AND AVISHAY TAL

Proof. Let , be an internal gate of). We prove the corollary for the case where , is an OR gate,

and the proof for the case that , is an AND gate is similar. We have

Pr

[
ℰ, ,0

]
= Pr

[
∃ literal H�9 : left(,)|0 = H�9 and !(right(,)|0H9←�) = 1

]
=

∑
literal H�

9

Pr

[
left(,)|0 = H�9 and !(right(,)|0H9←�) = 1

]
=

∑
literal H�

9

Pr

[
!(right(,)|0H9←�) = 1

��� left(,)|0 = H�9
]
· Pr

[
left(,)|0 = H�9

]
≤ @ ·

√
!(right(,)) ·

∑
literal H�

9

Pr

[
left(,)|0 = H�9

]
(Lemma 4.4)

= @ ·
√
!(right(,)) · Pr[!(left(,)|0) = 1]

≤ @2 ·
√
!(left(,)) · !(right(,)), (Lemma 4.1)

as required. �

The shrinkage theoremnow follows using the same calculation as above, replacing Lemma 4.3

with Lemma 4.6 and the simplifying assumption with Corollary 4.7:

E
[
!() |0)

]
≤ (3 + 2) ·

∑
internal gate , of)

Pr

[
ℰ, ,0

]
+ @ ·

√
B (Lemma 4.6)

≤ @2 · (3 + 2) ·
∑

internal gate , of)

√
!(left(,)) · !(right(,)) + @ ·

√
B (Corollary 4.7)

≤ @2 · (3 + 2) ·
∑

internal gate , of)

(
!(left(,)) + !(right(,))

)
+ @ ·

√
B (AM–GM ineq.)

= @2 · (3 + 2) ·
∑

internal gate , of)

size(,) + @ ·
√
B

≤ $(@2 · 32 · B + @ ·
√
B).

In the remainder of this section, we prove Lemmas 4.1, and 4.4, and 4.6.

Remark 4.8. In this paper, we do not prove Lemma 4.3, since we do not actually need it to

prove our main results in Section 8. However, this lemma can be established using the proof of

Lemma 4.6, with some minor changes.

4.1 Proof of Lemma 4.1

We begin with proving Lemma 4.1, restated next.

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 18

http://dx.doi.org/10.4086/toc

SHRINKAGE UNDER RANDOM PROJECTIONS

Lemma 4.1. Let 5 : {0, 1}= → {0, 1} be a Boolean function, and let 0 be a @-fixing projection. Then,

Pr[!(5 |0) = 1] ≤ @ ·
√
!(5).

Let 5 : {0, 1}= → {0, 1}, and let ℰ be the set of projections � such that !(5 |�) = 1. We prove

that the probability that 0 ∈ ℰ is at most @ ·
√
!(5). Our proof follows closely the proof of [23,

Lemma 4.1].

Let Π be a protocol that solves KW 5 and has !(5) leaves (such a protocol exists by Theo-

rem 2.10). Let A and ℬ be the sets of projections � for which 5 |� is the constants 1 and 0,

respectively. We extend the protocol Π to take inputs fromA × ℬ as follows: when Alice and

Bob are given as inputs the projections �� ∈ A and �� ∈ ℬ, respectively, they construct strings

0, 1 ∈ {0, 1}= from �� ,�� by substituting 0 for all the variables H1 , . . . , H< , and invoke Π on the

inputs 0 and 1. Observe that 0 and 1 are indeed legal inputs for Π (since 5 (0) = 1 and 5 (1) = 0).

Moreover, recall that the protocol Π induces a partition ofA × ℬ to combinatorial rectangles,

and that we denote the rectangle of the leaf ℓ byAℓ × ℬℓ (see Notation 2.8).

Our proof strategy is the following: We associate with every projection � ∈ ℰ a leaf of Π,

denoted leaf(�). We consider the two disjoint events ℰ+ , ℰ− that correspond to the event that

5 |� is a single positive literal or a single negative literal, respectively, and show that for every

leaf ℓ we have

Pr

[
0 ∈ ℰ+ and leaf(0) = ℓ

]
≤ @ ·

√
Pr[0 ∈ Aℓ] · Pr[0 ∈ ℬℓ] (4.1)

Pr[0 ∈ ℰ− and leaf(0) = ℓ] ≤ @ ·
√

Pr[0 ∈ Aℓ] · Pr[0 ∈ ℬℓ]. (4.2)

Together, the two inequalities imply that

Pr[0 ∈ ℰ and leaf(0) = ℓ] ≤ 2@ ·
√

Pr[0 ∈ Aℓ] · Pr[0 ∈ ℬℓ].

The desired bound on Pr[0 ∈ ℰ]will follow by summing the latter bound over all the leaves ℓ

of Π.

We start by explaining how to associate a leaf with every projection � ∈ ℰ+. Let � ∈ ℰ+.
Then, it must be the case that 5 |� = H 9 for some 9 ∈ [<]. We define the projections �1 = �H9←1

and �0 = �H9←0, and observe that �1 ∈ A and �0 ∈ ℬ. We now define leaf(�) to be the leaf to

which Π arrives when invoked on inputs �1
and �0

. Observe that the output of Π at leaf(�)
must be a variable G8 that satisfies �(G8) ∈

{
H 9 , H 9

}
, and thus �var(�(G8))←1

= �1
.

Next, fix a leaf ℓ . We prove that Pr[0 ∈ ℰ+ and leaf(0) = ℓ] ≤ @1 · Pr[0 ∈ Aℓ]. Let G8 be the

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 19

http://dx.doi.org/10.4086/toc

YUVAL FILMUS, OR MEIR, AND AVISHAY TAL

output of the protocol Π at ℓ . Then,

Pr

[
0 ∈ ℰ+ and leaf(0) = ℓ

]
≤ Pr

[
01 ∈ Aℓ and 0(G8) ∉ {0, 1} and 0var(0(G8))←1

= 01

]
≤ Pr

[
0(G8) ∉ {0, 1} and 0var(0(G8))←1

∈ Aℓ

]
=

∑
�∈Aℓ

Pr

[
0(G8) ∉ {0, 1} and 0var(0(G8))←1

= �
]

≤ @1 ·
∑
�∈Aℓ

Pr[0 = �] (since 0 is (@0 , @1)-fixing)

= @1 · Pr[0 ∈ Aℓ] .

Similarly, it can be proved that Pr[0 ∈ ℰ+ and leaf(0) = ℓ] ≤ @0 · Pr[0 ∈ ℬℓ]. Together, the two

bounds imply that

Pr

[
0 ∈ ℰ+ and leaf(0) = ℓ

]
≤

√
@1 Pr[0 ∈ Aℓ] · @0 Pr[0 ∈ ℬℓ] = @ ·

√
Pr[0 ∈ Aℓ] · Pr[0 ∈ ℬℓ]

for every leaf ℓ of Π. We define leaf(�) for projections � ∈ ℰ− in an analogous way, and then a

similar argument shows that

Pr[0 ∈ ℰ− and leaf(0) = ℓ] ≤ @ ·
√

Pr[0 ∈ Aℓ] · Pr[0 ∈ ℬℓ].

It follows that

Pr[0 ∈ ℰ and leaf(0) = ℓ] ≤ 2@ ·
√

Pr[0 ∈ Aℓ] · Pr[0 ∈ ℬℓ].

Finally, let ℒ denote the set of leaves of Π. It holds that

Pr[0 ∈ ℰ] =
∑
ℓ∈ℒ

Pr[0 ∈ ℰ and leaf(0) = ℓ]

≤ 2@ ·
∑
ℓ∈ℒ

√
Pr[0 ∈ Aℓ] · Pr[0 ∈ ℬℓ]

≤ 2@ ·
√
|ℒ| ·

√∑
ℓ∈ℒ

Pr[0 ∈ Aℓ] · Pr[0 ∈ ℬℓ] (Cauchy-Schwarz – see Fact 2.12)

= 2@ ·
√
!(5) ·

√∑
ℓ∈ℒ

Pr[0 ∈ Aℓ] · Pr[0 ∈ ℬℓ].

We conclude the proof by showing that

∑
ℓ∈ℒ Pr[0 ∈ Aℓ] ·Pr[0 ∈ ℬℓ] ≤ 1

4
. To this end, let 0� ,0�

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 20

http://dx.doi.org/10.4086/toc

SHRINKAGE UNDER RANDOM PROJECTIONS

be two independent random variables that are distributed identically to 0. Then, we have∑
ℓ∈ℒ

Pr[0 ∈ Aℓ] · Pr[0 ∈ ℬℓ] =
∑
ℓ∈ℒ

Pr

[
0� ∈ Aℓ

]
· Pr

[
0� ∈ ℬℓ

]
=

∑
ℓ∈ℒ

Pr

[
(0� ,0�) ∈ Aℓ × ℬℓ

]
(0� ,0� are independent)

= Pr

[
(0� ,0�) ∈ A × ℬ

]
(Aℓ × ℬℓ are a partition ofA × ℬ)

= Pr[0� ∈ A] · Pr[0� ∈ ℬ] (0� ,0� are independent)

= Pr[0 ∈ A] · Pr[0 ∈ ℬ]
≤ Pr[0 ∈ A] · (1 − Pr[0 ∈ A]) ≤ 1/4. (A,ℬ are disjoint)

4.2 Proof of Lemma 4.4

We turn to proving Lemma 4.4, restated next.

Lemma 4.4. Let 0 be a @-fixing projection. Let 51 , 52 : {0, 1}= → {0, 1}, let �, � ∈ {0, 1}, and let H 9 be
a variable. Then,

Pr

[
!(52 |0H9←�) = 1

��� 51 |0 = H�9] ≤ @ ·√!(52). (4.3)

Let 0 be a (@0 , @1)-fixing random projection, and let @ =
√
@0@1. Let 51 , 52 : {0, 1}= → {0, 1},

let �, � ∈ {0, 1}, and let H 9 be a variable. We prove Equation 4.3. For simplicity, we focus on

the case that 51 |0 = H 9 , and the case that 51 |0 = H 9 can be dealt with similarly. The crux of the

proof is to show that the random projection 0H9←� is essentially a (@0 , @1)-fixing projection even

when conditioned on the event 51 |0 = H 9 , and therefore Equation 4.3 is implied immediately by

Lemma 4.1.

In order to carry out this argument, we first establish some notation. Let O+ = 0−1(H 9)
and O− = 0−1(H 9), and denote by 0′ the projection obtained from 0 by restricting its domain

to {G1 , . . . , G=} \(O+ ∪ O−). We denote by 52,O+ ,O− the function over {G1 , . . . , G=} \(O+ ∪ O−) that is
obtained from 52 by hard-wiring � and � to the variables in O+ and O−, respectively. Observe that

52 |0H9←� = 52,O+ ,O− |0′, so it suffices to prove that for every two disjoint sets �+ , �− ⊆ {G1 , . . . , G=}
we have

Pr

[
!(52,O+ ,O− |0′) = 1

�� 51 |0 = H 9 , O+ = �+ , O− = �−] ≤ @ ·√!(52). (4.4)

Let �+ , �− ⊆ {G1 , . . . , G=} be disjoint sets, and let ℐ be the event that O+ = �+ and O− = �−. For
convenience, let = {G1 , . . . , G=} \(�+ ∪ �−) and . = {H1 , . . . , H<} \

{
H 9

}
, so 0′ is a random

projection from to . when conditioned on ℐ. To prove Equation 4.4, it suffices to prove that

0′ is a (@0 , @1)-fixing projection when conditioned on the events ℐ and 51 |0 = H 9 , and then the

inequality will follow from Lemma 4.1. We first prove that 0′ is a (@0 , @1)-fixing projection when

conditioning only on the event ℐ (and not on 51 |0 = H 9).

Proposition 4.9. Conditioned on the event ℐ, the projection 0′ is a (@0 , @1)-fixing projection.

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 21

http://dx.doi.org/10.4086/toc

YUVAL FILMUS, OR MEIR, AND AVISHAY TAL

Proof. We prove that 0′ satisfies the definition of a fixing projection. Let �′ be a projection from

 to ., and let G8 ∈ . Let � ∈ {0, 1}. We have

Pr

[
0′(G8) ∉ {0, 1} and 0′var(0′(G8))←� = �′

��� ℐ]
= Pr

[
0(G8) ∉ {0, 1} and 0var(0(G8))←� | = �′ and ℐ

]
/Pr[ℐ]

=
∑

� : �| =�′,�−1(H9)=�+ ,
�−1(H9)=�−

Pr

[
0(G8) ∉ {0, 1} and 0|var(0(G8))←� = �

]
/Pr[ℐ]

≤
∑

� : �| =�′,�−1(H9)=�+ ,
�−1(H9)=�−

@� · Pr[0 = �]/Pr[ℐ] (since 0 is (@0 , @1)-fixing)

= @� · Pr[0| = �′ and ℐ] /Pr[ℐ]
= @� · Pr[0′ = �′ | ℐ] ,

as required. �

We now prove that 0′ remains a (@0 , @1)-fixing projection when conditioning on 51 |0 = H 9 in
addition to ℐ. The crucial observation is that the event 51 |0 = H 9 is essentially a filter, defined
next.

Definition 4.10. A set of projections ℰ from G1 , . . . , G= to H1 , . . . , H< is a filter if it is closed under

assignment to variables, i. e., if for every � ∈ ℰ, every variable H 9 , and every bit � ∈ {0, 1}, we

have �H9←� ∈ ℰ.
It turns out that the property of a projection being a (@0 , @1)-fixing projection is preserved

when conditioning on filters. Formally:

Proposition 4.11. Letℰ be a filter and let0∗ be a (@0 , @1)-fixing projection. Then,0∗ |ℰ is a (@0 , @1)-fixing
projection.

Proof. Let �∗ be a projection, and let G8 be a variable. Let � ∈ {0, 1}. We would like to prove that

Pr

[
0∗(G8) ∉ {0, 1} and 0∗var(0∗(G8))←� = �∗

��� 0∗ ∈ ℰ] ≤ @� · Pr[0∗ = �∗ | 0∗ ∈ ℰ] .

If �∗ ∉ ℰ, then both sides of the equation are equal to zero: this is obvious for the right-hand

side, and holds for the left-hand side since if there is a projection �0 ∈ ℰ and a variable H 9 such

that �0

H9←� = �∗ then it must be the case that �∗ ∈ ℰ by the definition of a filter. Thus, we may

assume that �∗ ∈ ℰ. Now, it holds that

Pr

[
0∗(G8) ∉ {0, 1} and 0∗var(0∗(G8))←� = �∗

��� 0∗ ∈ ℰ]
≤ Pr

[
0∗(G8) ∉ {0, 1} and 0∗var(0∗(G8))←� = �∗

]
/Pr[0∗ ∈ ℰ]

≤ @� · Pr[0∗ = �∗] /Pr[0∗ ∈ ℰ] (0∗ is (@0 , @1)-fixing)
= @� · Pr[0∗ = �∗ | 0∗ ∈ ℰ] , (�∗ ∈ ℰ)

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 22

http://dx.doi.org/10.4086/toc

SHRINKAGE UNDER RANDOM PROJECTIONS

as required. �

Consider the event 51 |0 = H 9 . Viewed as a set of projections from G1 , . . . , G= to H1 , . . . , H< ,

this event is not a filter, since it is not closed under assignments to H 9 . However, this event is

closed under assignments to all variables except H 9 : when 51 |0 = H 9 , the equality continues to hold

even if the variables in . are fixed to constants. Moreover, observe that conditioned on ℐ, the
event 51 |0 = H 9 depends only on the values that 0 assigns to . Thus, we can view the event

51 |0 = H 9 as a set of projections from to ., and taking this view, this event is a filter. Since 0′ is
a (@0 , @1)-fixing projection from to {H1 , . . . , H<} \

{
H 9

}
when conditioned on ℐ, we conclude

that it is a (@0 , @1)-fixing projection when conditioned on both ℐ and 51 |0 = H 9 . It follows by

Lemma 4.1 that

Pr

[
!(52,�+ ,�− |0′) = 1

�� 51 |0 = H 9 , O+ = �+ , O− = �−] ≤ @ ·√!(52,�+ ,�−) ≤ @ ·√!(52),
as required.

4.3 Proof of Lemma 4.6

Finally, we prove Lemma 4.6, restated next.

Lemma 4.6. For every projection � we have

!() |�) ≤
∑

internal gate , of)

(depth(,) + 2) · 1ℰ, ,� + 1!() |�)=1
. (4.5)

Let � be a projection. We prove that � satisfies Equation 4.5. Recall that ℰ, ,� is the event

that there exists some literal H�
9
such that left(,)|� = H�9 and

• !(right(,)|�H9←�) = 1 if , is an OR gate, or

• !(right(,)|�H9←�
) = 1 if , is an AND gate.

We prove Equation 4.5 by induction. If) consists of a single leaf, then the upper bound clearly

holds. Otherwise, the root of) is an internal gate. Without loss of generality, assume that the

root is an OR gate. We denote the subformulas rooted at the left and right children of the root

by)ℓ and)A , respectively. We consider several cases:

• If !() |�) = 1, then the upper bound clearly holds.

• Suppose that !()ℓ |�) ≥ 2. By the subadditivity of formula complexity (Fact 2.3), we have

!() |�) ≤ !()ℓ |�) + !()A |�).

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 23

http://dx.doi.org/10.4086/toc

YUVAL FILMUS, OR MEIR, AND AVISHAY TAL

By the induction hypothesis, we have

!()ℓ |�) ≤
∑

internal gate , of)ℓ

(depth)ℓ
(,) + 2) · 1ℰ, ,� + 1!()ℓ |�)=1

=
∑

internal gate , of)ℓ

(depth)ℓ
(,) + 2) · 1ℰ, ,� (!()ℓ |�) ≥ 2)

=
∑

internal gate , of)ℓ

(depth)(,) + 1) · 1ℰ, ,� ,

where the equality holds since depth)ℓ
(,) = depth)(,) − 1 for every gate , of)ℓ . Since

!()ℓ |�) ≥ 2, at least one of the terms in the last sum must be non-zero, so it holds that∑
internal gate , of)ℓ

(depth)(,) + 1) · 1ℰ, ,� ≤
∑

internal gate , of)ℓ

(depth)(,) + 2) · 1ℰ, ,� − 1.

Next, by the induction hypothesis we have

!()A |�) ≤
∑

internal gate , of)A

(depth)A
(,) + 2) · 1ℰ, ,� + 1!()A |�)=1

≤
∑

internal gate , of)A

(depth)(,) + 2) · 1ℰ, ,� + 1.

By combining the two bounds, we get that

!() |�) ≤ !()ℓ |�) + !()A |�)
≤

∑
internal gate , of)ℓ

(depth)(,) + 2) · 1ℰ, ,� − 1

+
∑

internal gate , of)A

(depth)(,) + 2) · 1ℰ, ,� + 1

≤
∑

internal gate , of)

(depth(,) + 2) · 1ℰ, ,�

≤
∑

internal gate , of)

(depth(,) + 2) · 1ℰ, ,� + 1!() |�)=1
,

as required.

• If !()A |�) ≥ 2, then we use the same argument of the previous case by exchanging)ℓ and
)A .

• Suppose that !() |�) ≥ 2, !()ℓ |�) ≤ 1 and !()A |�) ≤ 1. Then, it must be the case that

!() |�) = 2 and also that !()ℓ |�) = 1 and !()A |�) = 1 (or otherwise !() |�) = 1). In

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 24

http://dx.doi.org/10.4086/toc

SHRINKAGE UNDER RANDOM PROJECTIONS

particular,)ℓ |� is equal to some literal H�
9
. It follows that) |� = H�

9
∨)A |�, and by the

one-variable simplification rules (Fact 4.5), this function is equal to

H�9 ∨
(
)A |�

)
H9←� = H

�
9 ∨)A |�H9←� .

Thus, it must be the case that !()A |�H9←�) = 1 (since !() |�) = 2). It follows that if we let ,

be the root of), then the event ℰ, ,� occurs and so

(depth(,) + 2) · 1ℰ, ,� = 2 = !() |�),

so the desired upper bound holds.

We proved that the upper bound holds in each of the possible cases, so the required result

follows.

5 Proof of shrinkage theorem for hiding projections

In this section we prove our the shrinkage theorem for hiding projections. We start by recalling

the definition of hiding projections and their shrinkage theorem.

Definition 3.9. Let 0 ≤ @0 , @1 ≤ 1. We say that a random projection 0 is a (@0 , @1)-hiding projection
if for every projection �, every bit � ∈ {0, 1}, and all variables G8 , H9 , we have

Pr

[
0(G8) ∈

{
H 9 , H 9

} �� 0H9←� = �
]
≤ @� ,

whenever the event conditioned on has positive probability. For shorthand, we say that 0 is a

@-hiding projection, for @ =
√
@0@1.

Theorem 3.12 (Shrinkage under hiding projections). Let) be a formula of size B and depth 3, and
let 0 be a @-hiding projection. Then

E
[
!() |0)

]
= $

(
<4 · @2 · 32 · B + <2 · @ ·

√
B
)
.

The crux of the proof of Theorem 3.12 is that hiding projections can be converted into fixing

projections. This is captured by the following result.

Lemma 5.1. Let 0 be a @-hiding projection from G1 , . . . , G= to H1 , . . . , H< . Then, there exists a (4<2 · @)-
fixing projection 0′ from G1 , . . . , G= to H1 , . . . , H< and an event ℋ of probability at least 1

2
such that

0′ = 0 conditioned onℋ . Furthermore, the eventℋ is independent of 0.

We prove Lemma 5.1 in Section 5.1. By combining Lemma 5.1 with our shrinkage theorem

for fixing projections, we obtain the following shrinkage theorem for hiding projections.

Theorem 3.12. Let) be a formula of size B and depth 3, and let 0 be a @-hiding projection. Then

E
[
!() |0)

]
= $

(
<4 · @2 · 32 · B + <2 · @ ·

√
B
)
.

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 25

http://dx.doi.org/10.4086/toc

YUVAL FILMUS, OR MEIR, AND AVISHAY TAL

Proof. Let 0′ and ℋ be the (4<2 · @)-fixing projection and event that are obtained from 0 by

Lemma 5.1. Since Pr [ℋ] ≥ 1

2
, we have

E
[
!() |0′)

]
≥ Pr[ℋ] · E

[
!() |0′)

�� ℋ]
≥ 1

2

· E
[
!() |0)

�� ℋ]
=

1

2

· E
[
!() |0)

]
,

where the second inequality holds since conditioned on ℋ it holds that 0′ = 0, and the

last equality holds since the event ℋ is independent of 0. On the other hand, by applying

Theorem 3.6 to 0′, we obtain that

E
[
!() |0′)

]
= $(<4 · @2 · 32 · B + <2 · @ ·

√
B).

The theorem follows by combining the two bounds. �

5.1 Proof of Lemma 5.1

We use the following straightforward generalization of the property of hiding projections.

Claim 5.2. Let 0 be a (@0 , @1)-hiding projection, and let E be a random set of projections that is
independent of 0. Then, for every � ∈ {0, 1}, we have

Pr

[
0(G8) ∈

{
H 9 , H 9

} �� 0H9←� ∈ E
]
≤ @� .

Proof. Let 0 and E be as in the claim, and let � ∈ {0, 1}. We have

Pr

[
0(G8) ∈

{
H 9 , H 9

} �� 0H9←� ∈ E
]

=
∑
�

Pr

[
0(G8) ∈

{
H 9 , H 9

} �� 0H9←� = � and � ∈ E
]
· Pr

[
0H9←� = �

�� 0H9←� ∈ E
]

=
∑
�

Pr

[
0(G8) ∈

{
H 9 , H 9

} �� 0H9←� = �
]
· Pr

[
0H9←� = �

�� 0H9←� ∈ E
]

(0 and E are independent)

≤
∑
�

@� · Pr

[
0H9←� = �

�� 0H9←� ∈ E
]

(0 is (@0 , @1)-hiding)

= @� . �

We turn to proving Lemma 5.1, restated next.

Lemma 5.1. Let 0 be a @-hiding projection from G1 , . . . , G= to H1 , . . . , H< . Then, there exists a (4<2 · @)-
fixing projection 0′ from G1 , . . . , G= to H1 , . . . , H< and an event ℋ of probability at least 1

2
such that

0′ = 0 conditioned onℋ . Furthermore, the eventℋ is independent of 0.

Suppose that 0 is a (@0 , @1)-hiding projection from G1 , . . . , G= to H1 , . . . , H< . Let 1 be a(
1 − 1

2<

)
-random restriction over H1 , . . . , H< , i. e., 1 is the random projection from H1 , . . . , H< to

H1 , . . . , H< that assigns each H 9 independently as follows:

1(H 9) =


H 9 with probability 1 − 1

2< ,

0 with probability
1

4< ,

1 with probability
1

4< .

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 26

http://dx.doi.org/10.4086/toc

SHRINKAGE UNDER RANDOM PROJECTIONS

For convenience, we define 1(0) = 0, 1(1) = 1, and 1(H 9) = 1(H 9) for every 9 ∈ [<]. We now

choose the random projection 0′ to be the composition 1 ◦ 0, and define the eventℋ to be the

event that 1(H 9) = H 9 for every 9 ∈ [<]. Observe that the event 0′ = 0 occurs wheneverℋ occurs,

and moreover

Pr[ℋ] =
(
1 − 1

2<

)<
≥ 1 − <

2<
=

1

2

,

as required. Moreover, the eventℋ is independent of 0, since 1 is independent of 0. We show

that 0′ is a (4 · <2 · @0 , 4 · <2 · @1)-fixing projection. To this end, we should show that for every

projection �′, every bit � ∈ {0, 1}, and every variable G8 ,

Pr

[
0′(G8) ∉ {0, 1} and 0′var(0′(G8))←� = �′

]
≤ 4 · <2 · @� · Pr[0′ = �′] . (5.1)

This is implied by the following inequality, which we will prove for all 9 ∈ [<]:

Pr

[
0′(G8) ∈

{
H 9 , H 9

}
and 0′H9←� = �′

]
≤ 4 · < · @� · Pr[0′ = �′] . (5.2)

Let 9 ∈ [<] and let 1−9 be the random projection obtained by restricting 1 to the do-

main {H1 , . . . , H<} \
{
H 9

}
. First, observe that if 1(H 9) = � then 0′ = 1 ◦ 0 = 1−9 ◦ 0H9←�,

and therefore

Pr[0′ = �′] ≥ Pr

[
1(H 9) = � and 1−9 ◦ 0H9←� = �′

]
=

1

4<
· Pr

[
1−9 ◦ 0H9←� = �′

]
,

where the equality holds since 1(H 9) is independent of 1−9 and 0. In the rest of this section

we will prove the following inequality, which together with the last inequality will imply

Equation 5.2:

Pr

[
0′(G8) ∈

{
H 9 , H 9

}
and 0′H9←� = �′

]
≤ @� · Pr

[
1−9 ◦ 0H9←� = �′

]
. (5.3)

To this end, observe that the event 0′(G8) ∈
{
H 9 , H 9

}
happens if and only if 0(G8) ∈

{
H 9 , H 9

}
and

1(H 9) = H 9 , and therefore

Pr

[
0′(G8) ∈

{
H 9 , H 9

}
and 0′H9←� = �′

]
= Pr

[
0(G8) ∈

{
H 9 , H 9

}
and 1(H 9) = H 9 and 0′H9←� = �′

]
.

Next, observe that if 1(H 9) = H 9 then 0′H9←� = 1−9 ◦ 0H9←�. It follows that the latter expression is

equal to

Pr

[
0(G8) ∈

{
H 9 , H 9

}
and 1(H 9) = H 9 and 1−9 ◦ 0H9←� = �′

]
≤ Pr

[
0(G8) ∈

{
H 9 , H 9

}
and 1−9 ◦ 0H9←� = �′

]
= Pr

[
0(G8) ∈

{
H 9 , H 9

} �� 1−9 ◦ 0H9←� = �′
]
· Pr

[
1−9 ◦ 0H9←� = �′

]
≤ @� · Pr

[
1−9 ◦ 0H9←� = �′

]
,

where the last inequality follows by applying Claim 5.2 with E being the set of projections �
that satisfy 1−9 ◦ � = �′. This concludes the proof of Equation 5.3.

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 27

http://dx.doi.org/10.4086/toc

YUVAL FILMUS, OR MEIR, AND AVISHAY TAL

Remark 5.3. We can improve the bound <2
in the statement of Lemma 5.1 to <:, where : is the

maximal number of variables 1, . . . , < which could appear in any position of 0. The reason

is that in the latter case, the transition from Equation 5.2 to Equation 5.1 incurs a factor of :

rather than <. This is useful, for example, since the random projections 0 of Section 8.1 have

the feature that for each 8 ∈ [=] there is a unique 9 ∈ [<] such that 0(G8) ∈ {0, 1, H9 , H 9}, and so

for these projections : = 1.

6 Joining projections

In this section, we define a join operation on fixing and hiding projections, and show that

it preserves the corresponding properties. This operation provides a convenient tool for

constructing random projections, and will be used in our applications.

Definition 6.1. Let
 be a projection from G1 , . . . , G=0 to H1 , . . . , H<0 , and let � be a projection

from F1 , . . . , F=1 to I1 , . . . , I<1 . The join
] � is the projection from G1 , . . . , G=0 , F1 , . . . , F=1 to

H1 , . . . , H<0 , I1 , . . . , I<1 obtained by joining
 and � together in the obvious way.

Lemma 6.2. Let " and # be independent random projections. If " and # are (@0 , @1)-fixing projections,
then so is "] #.

Proof. Let " and # be (@0 , @1)-fixing projections, and let $ = "] #. We prove that $ is a (@0 , @1)-
fixing projection. Let
 be a projection from G1 , . . . , G=0 to H1 , . . . , H<0 , let � be a projection from

F1 , . . . , F=1 to I1 , . . . , I<1 , and let � =
] �. We should show that for every � ∈ {0, 1} and every

input variable D (either G8 or F8) we have

Pr

[
$(D) ∉ {0, 1} and $var($(D))←� = �

]
≤ @� · Pr

[
$ = �

]
.

Let � ∈ {0, 1} be a bit, and let D be an input variable. Assume that D = G8 for some 8 ∈ [=0] (if
D = F8 for some 8 ∈ [=1], the proof is similar). The above equation is therefore equivalent to

Pr

[
"(G8) ∉ {0, 1} and "var("(G8))←� =
 and #var("(G8))←� = �

]
≤ @� · Pr

[
" =
 and # = �

]
.

Since the ranges of " and # are disjoint, the variable var("(G8)) does not appear in the range of #,
and therefore #var("(G8))←� = #. The independence of " and # shows that the above inequality is

equivalent to

Pr

[
"(G8) ∉ {0, 1} and "var("(G8))←� =

]
· Pr

[
= �

]
≤ @� · Pr[" =
] · Pr

[
= �

]
,

which follows from " being (@0 , @1)-fixing. �

Lemma 6.3. Let " and # be independent random projections. If " and # are (@0 , @1)-hiding projections,
then so is "] #.

Proof. Let " and # be (@0 , @1)-hiding projections, and let $ = "] #. We prove that $ is a (@0 , @1)-
hiding projection. Let
 be a projection from G1 , . . . , G=0 to H1 , . . . , H<0 , let � be a projection from

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 28

http://dx.doi.org/10.4086/toc

SHRINKAGE UNDER RANDOM PROJECTIONS

F1 , . . . , F=1 to I1 , . . . , I<1 , and let � =
] �. We should show that for every � ∈ {0, 1}, every
input variable D (either G8 or F8), and every output variable E (either H 9 or I 9) we have

Pr

[
$(D) ∈ {E, E}

�� $E←� = �
]
≤ @� .

Let � ∈ {0, 1} be a bit, let D be an input variable, and let E be an output variable. Assume that

D = G8 for some 8 ∈ [=0] (if D = F8 for some 8 ∈ [=1], the proof is similar). In this case, we may

assume that E = H 9 for some 9 ∈ [<0], since otherwise the probability on the left-hand side is 0.

Thus, the above equation is equivalent to

Pr

[
"(G8) ∈

{
H 9 , H 9

} �� "H9←� =
 and #H9←� = �
]
≤ @� .

Since " and # are independent, whenever the conditioned event has positive probability, we

have

Pr

[
"(G8) ∈

{
H 9 , H 9

} �� "H9←� =
 and #H9←� = �
]
= Pr

[
"(G8) ∈

{
H 9 , H 9

} �� "H8←� =

]
≤ @� ,

where the inequality holds since " is (@0 , @1)-hiding. �

7 Hiding projections from complexity measures

In this section we define a generalization of the unweighted quantum adversary bound due to

Ambainis [2], and show how it can be used for constructing hiding projections. We also derive a

relationship between this measure to the Khrapchenko bound [33], and conclude that the latter

bound can be used for constructing hiding projections as well.

7.1 The soft-adversary method

Ambainis [2] defined the following complexity measure for Boolean functions, called the

unweighted quantum adversary bound, and proved that it is a lower bound on quantum query

complexity (for a definition of quantum query complexity, see [2] or [9]).

Definition 7.1. Let 5 : {0, 1}= → {0, 1} be a non-constant function. Let ' ⊆ 5 −1(1) × 5 −1(0),
and let �, � be the projections of ' into the first and second coordinates, respectively. Let

'(0, �) = {1 ∈ � : (0, 1) ∈ '}, let '8(0, �) = {1 ∈ � : (0, 1) ∈ ', 08 ≠ 18}, and define

'(�, 1), '8(�, 1) analogously. The unweighted quantum adversary bound of 5 is

AdvD(5) = max

'⊆ 5 −1(1)× 5 −1(0)

√√√
min0∈� |'(0, �)| ·min1∈� |'(�, 1)|

max 0∈�
8∈[=]
|'8(0, �)| ·max 1∈�

8∈[=]
|'8(�, 1)|

.

Theorem 7.2 ([2]). The quantum query complexity of a non-constant function 5 : {0, 1}= → {0, 1} is
Ω(AdvD(5)).

We define the following generalization of the unweighted quantum adversary bound.

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 29

http://dx.doi.org/10.4086/toc

YUVAL FILMUS, OR MEIR, AND AVISHAY TAL

Definition 7.3. Let 5 : {0, 1}= → {0, 1} be a Boolean function. We define the soft-adversary bound
of 5 , which we denote AdvB , to be the maximum of the quantity√√√

min

0∈supp(a)
8∈[=]

1

Pr[a8 ≠ b8 | a = 0]
· min

1∈supp(b)
8∈[=]

1

Pr[a8 ≠ b8 | b = 1]

over all distributions (a , b) supported on 5 −1(1) × 5 −1(0).

We chose to call this notion “soft-adversary bound” since we view it as a variant of the

unweighted adversary bound in which, instead of choosing for each pair (0, 1) whether it

belongs to ' or not (a “hard” decision), we assign each pair (0, 1) a probability of being in the

relation ' (a “soft” decision). We now show that this bound indeed generalizes the unweighted

quantum adversary method.

Proposition 7.4. Let 5 : {0, 1}= → {0, 1} be non-constant function. Then AdvB(5) ≥ AdvD(5).

Proof. Let ' ⊆ 5 −1(1) × 5 −1(0) be a relation that attains AdvD(5). Let (a , b) be a uniformly

distributed element of '. Using Pr[a8 ≠ b8 | a = 0] = |'8(0, �)|/|'(0, �)| and Pr[a8 ≠ b8 | b =
1] = |'8(�, 1)|/|'(�, 1)|, it is easy to check that the quantity in the definition of AdvB(5) is at
least AdvD(5). �

Following [53, 38], it can be shown that the soft-adversary bound is a lower bound on

formula complexity. We have the following result, which is proved in Section A.

Proposition 7.5. For any non-constant function 5 : {0, 1}= → {0, 1} we have !(5) ≥ Adv
2

B (5).

Ourmotivation for introducing the soft-adversary bound is that it can be used for constructing

hiding projections. We have the following result.

Lemma 7.6. Let 5 : {0, 1}= → {0, 1} be a non-constant Boolean function. There is a @-hiding projection
0 to a single variable H such that @ = 1/AdvB(5) and such that 5 |0 is a non-constant function with
probability 1.

Proof. Let (a , b) be a distribution supported on 5 −1(1) × 5 −1(0) which attains AdvB(5). We

construct a @-hiding projection 0 from G1 , . . . , G= to a single variable H for @ = 1/AdvB(5), such
that 0H←1 = a and 0H←0 = b. Note that this implies in particular that 5 |0 is a non-constant

function, since a ∈ 5 −1(1) and b ∈ 5 −1(0). Specifically, for every input variable G8 of 5 , we

define 0 as follows:

• If a8 = b8 then 0(G8) = a8 .

• If a8 = 1 and b8 = 0 then 0(G8) = H.

• If a8 = 0 and b8 = 1 then 0(G8) = H.

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 30

http://dx.doi.org/10.4086/toc

SHRINKAGE UNDER RANDOM PROJECTIONS

It is not hard to see that indeed0H←1 = a and0H←0 = b. We now show that0 is 1/AdvB(5)-hiding.
To this end, we show that 0 is (@0 , @1)-hiding for

@0 = max

1∈supp(b)
8∈[=]

Pr[a8 ≠ b8 | b = 1], @1 = max

0∈supp(a)
8∈[=]

Pr[a8 ≠ b8 | a = 0].

Note that indeed

√
@0@1 = 1/AdvB(5). In order to prove that 0 is (@0 , @1)-hiding, we need to

prove that

Pr

[
0(G8) ∈ {H, H}

�� 0H←� = �
]
≤ @�

for every 8 ∈ [=] and every � ∈ {0, 1}. To this end, observe that the event 0(G8) ∈ {H, H} occurs if
and only if a8 ≠ b8 , and that 0H←1 ,0H←0 are equal to the strings a , b respectively. It follows that

Pr

[
0(G8) ∈ {H, H}

�� 0H←1 = �
]
= Pr[a8 ≠ b8 | a = �] ≤ @1

Pr

[
0(G8) ∈ {H, H}

�� 0H←0 = �
]
= Pr[a8 ≠ b8 | b = �] ≤ @0

as required. �

Remark 7.7. Several generalizations of Ambainis’ original quantum adversary bound have

appeared in the literature. Špalek and Szegedy [53] showed that all of these methods are

equivalent, and so they are known collectively as the strong quantum adversary bound. The

formulation of the strong quantum adversary bound in Ambainis [3] makes it clear that it

subsumes our soft version. Laplante, Lee and Szegedy [38] showed that the strong quantum

adversary bound is a lower bound on formula complexity, and they came up with an even

stronger measure, maxPI2, that is still a lower bound on formula complexity, but no longer a

lower bound on quantum query complexity.

Høyer, Lee and Špalek [28] generalized the strong quantum adversary bound, coming up

with a new measure known as the general adversary bound, which is a lower bound both on

quantum query complexity and (after squaring) on formula complexity. Reichardt [49, 50, 39, 51]

showed that the general adversary bound in fact coincides with quantum query complexity (up

to constant factors). These results are described in a recent survey by Li and Shirley [40].

Remark 7.8. We note that AdvB(5) ≤ = (always). In order to prove this, we show that each

factor in Definition 7.3 is at most =. In particular, observe that it always holds that a ≠ b, and
hence for every possible value 0 of a, we have

=∑
8=1

Pr[a8 ≠ b8 | a = 0] ≥ Pr[∃8 ∈ [=] s.t. a8 ≠ b8 | a = 0] = 1.

By averaging, there must be a coordinate 8 ∈ [=] such that Pr[a8 ≠ b8 | a = 0] ≥ 1

= , and therefore

min

0∈supp(a)
8∈[=]

1

Pr[a8 ≠ b8 | a = 0]
≤ = .

The upper bound for the other factor in Definition 7.3 can be proved similarly.

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 31

http://dx.doi.org/10.4086/toc

YUVAL FILMUS, OR MEIR, AND AVISHAY TAL

7.2 Khrapchenko bound

Khrapchenko [33] defined the following complexity measure for Boolean functions, and proved

that it is a lower bound on formula complexity.

Definition 7.9. Let 5 : {0, 1}= → {0, 1} be a non-constant function. For every two sets� ⊆ 5 −1(1)
and � ⊆ 5 −1(0), let �(�, �) be the set of pairs (0, 1) ∈ � × � such that 0 and 1 differ on exactly

one coordinate. The Khrapchenko bound of 5 is

Khr(5) = max

�⊆ 5 −1(1),�⊆ 5 −1(0)

|�(�, �)|2

|�| · |�| .

Theorem 7.10 ([33]). For every non-constant function 5 : {0, 1}= → {0, 1} we have !(5) ≥ Khr(5).

Laplante, Lee, and Szegedy [38] observed that the strong adversary method generalizes the

Khrapchenko bound. We show that this holds even for the unweighted adversary bound, up to

a constant factor. Specifically, we have the following result, which is proved in Section C.

Proposition 7.11. For any non-constant function 5 : {0, 1}= → {0, 1} we have AdvD(5) ≥
√

Khr(5)
4

.

By combining Propositions 7.4 and 7.11 with Lemma 7.6, it follows that the Khrapchenko

bound too can be used for constructing hiding projections.

Corollary 7.12. Let 5 : {0, 1}= → {0, 1} be a non-constant Boolean function. There is a @-hiding
projection 0 to a single variable H such that @ =

√
4/Khr(5) and such that 5 |0 is a non-constant function

with probability 1.

In Section B, we describe a new complexity measure, the min-entropy Khrapchenko bound,
which generalizes the Khrapchenko bound in the sameway the soft-adversary bound generalizes

the unweighted adversary bound. As we show there, the min-entropy Khrapchenko bound

provides a simple way to prove lower bounds on the soft-adversary bound.

8 Applications

In this section, we apply our shrinkage theorems to obtain new results regarding the KRW

conjecture and the formula complexity of GI0
. First, in Section 8.1, we prove the KRW conjecture

for inner functions for which the soft-adversary bound is tight. We use this version of the KRW

conjecture in Section 8.2 to prove cubic formula lower bounds for a function in GI0
. Finally, we

rederive some closely related known results in Section 8.3.

8.1 Application to the KRW conjecture

Given two Boolean functions 5 : {0, 1}< → {0, 1} and , : {0, 1}= → {0, 1}, their (block-)-

composition is the function 5 � , :

(
{0, 1}=

)< → {0, 1} defined by

(5 � ,)(G1 , . . . , G<) = 5 (,(G1), . . . , ,(G<)) ,

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 32

http://dx.doi.org/10.4086/toc

SHRINKAGE UNDER RANDOM PROJECTIONS

where G1 , . . . , G< ∈ {0, 1}= . It is easy to see that !(5 � ,) ≤ !(5) · !(,). The KRW conjecture [31]

asserts that this is roughly optimal, namely, that !(5 � ,) & !(5) · !(,). In this section, we prove

the following related result.

Theorem 8.1. Let 5 : {0, 1}< → {0, 1} and , : {0, 1}= → {0, 1} be non-constant Boolean functions.
Then,

! (5 � ,)
1+$

(
1√

log !(5�,)

)
≥ 1

$(<4) · !(5) ·Adv
2

B (,).

Proof. Let 0 be the @-hiding projection constructed for , in Lemma 7.6 with @ = 1/AdvB(,), and
recall that , |0 is non-constant with probability 1. Let 01 , . . . ,0< be independent copies of 0, and
let 0< denote their <-fold join. Observe that 0< is @-hiding according to Lemma 6.3. Applying

Corollary 3.13 and using the estimate G +
√
G = $(G + 1), we see that B = !(5 � ,) satisfies

E [! ((5 � ,)|0<)] = <4 · 1

Adv
2

B (,)
· B

1+$
(

1√
log B

)
+ $(1).

On the other hand, it is not hard to see that

((5 � ,)|0<) (G1 , . . . , G<) = 5 (, |01
(G1), . . . , , |0< (G<)) ,

and since , |01
, . . . , , |0< are non-constant, the function 5 reduces to (5 � ,)|0< . In particular,

!(5) ≤ E [! ((5 � ,)|0<)] = <4 · 1

Adv
2

B (,)
· B

1+$
(

1√
log B

)
+ $(1).

This means that there exists a constant � > 0 such that for all non-constant 5 and ,

!(5) ≤ <4 · 1

Adv
2

B (,)
· !(5 � ,)

1+ �√
log !(5�,) + �.

We consider two cases depending on whether !(5) ≥ 2� or not. If !(5) ≥ 2�, then the above

inequality implies

!(5)
2

≤ <4 · 1

Adv
2

B (,)
· !(5 � ,)

1+ �√
log !(5�,) ,

and we obtain the theorem by rearranging.

If !(5) < 2�, then we have !(5 � ,) ≥ !(,) since , or ¬, is a sub-function of 5 ◦ , (as follows

from the fact that 5 is non-constant). This means that in this case

!(5 � ,) ≥ !(,) >
!(5) · !(,)

2�
≥
!(5) ·Adv

2

B (,)
2�

which is stronger than the required conclusion. �

A direct consequence of the theorem is the following corollary, which is a special case of the

KRW conjecture for inner functions , for which the soft-adversary bound is almost tight.

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 33

http://dx.doi.org/10.4086/toc

YUVAL FILMUS, OR MEIR, AND AVISHAY TAL

Corollary 8.2. Let 5 : {0, 1}< → {0, 1} and , : {0, 1}= → {0, 1} be non-constant Boolean functions

such that Adv
2

B (,) ≥ !(,)
1−$

(
1√

log !(,)

)
. Then,

!(5 � ,) ≥ 1

$(<4) · ! (5)
1−$

(
1√

log !(5)

)
· !(,)

1−$
(

1√
log !(,)

)
.

Proof. By substituting the assumption on , in the bound of Theorem 8.1, we obtain that

! (5 � ,)
1+$

(
1√

log !(5�,)

)
≥ 1

$(<4) · !(5) · (!(,))
1−$

(
1√

log !(,)

)
.

Moreover, since !(5 � ,) ≤ !(5) · !(,), we have

! (5 � ,)
1+$

(
1√

log !(5�,)

)
≤ !(5 � ,) · (!(5) · !(,))

$

(
1√

log !(5�,)

)

≤ !(5 � ,) · ! (5)
$

(
1√

log !(5�,)

)
· ! (,)

$

(
1√

log !(5�,)

)

≤ !(5 � ,) · ! (5)
$

(
1√

log !(5)

)
· ! (,)

$

(
1√

log !(,)

)
.

The corollary follows by combining the two bounds. �

Using the fact that Khr(,) ≤ Adv
2

B (,) (Proposition 7.11), we obtain the following immediate

corollary.

Corollary 8.3. Let 5 : {0, 1}< → {0, 1} and , : {0, 1}= → {0, 1} be non-constant Boolean functions.
Then,

! (5 � ,)
1+$

(
1√

log !(5�,)

)
≥ 1

$(<4) · !(5) · Khr(,).

Moreover, if Khr(,) ≥ !(,)
1−$

(
1√

log !(,)

)
, then

!(5 � ,) ≥ 1

$(<4) · ! (5)
1−$

(
1√

log !(5)

)
· !(,)

1−$
(

1√
log !(,)

)
.

8.2 Formula lower bounds for GI0

In this section, we derive our second main application: cubic formula lower bounds for GI0
.

Formally, we have the following result.

Theorem 1.1. There exists a family of Boolean functions ℎ= : {0, 1}= → {0, 1} for = ∈ ℕ such that

1. ℎ= can be computed by uniform depth-4 unbounded fan-in formulas of size $(=3).

2. The formula size of ℎ= is at least =3−>(1).

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 34

http://dx.doi.org/10.4086/toc

SHRINKAGE UNDER RANDOM PROJECTIONS

The function ℎ= is constructed similarly to the Andreev function [4], with the parity function

replaced with the surjectivity function [6], defined next.

Definition 8.4. Let Σ be a finite alphabet, and let A ∈ ℕ be such that A ≥ |Σ|. The surjectivity
function SurjΣ,A : ΣA → {0, 1} interprets its input as a function from [A] to Σ, and outputs whether

the function is surjective. In other words, Surj(�1 , . . . , �A) = 1 if and only if every symbol in Σ

appears in (�1 , . . . , �A).

In order to prove Theorem 1.1, we will use Theorem 8.1 with the inner function , being Surj= .
To this end, we use the following result of [6].

Lemma 8.5 ([6]). For every natural number B such that B ≥ 2, we have AdvD(Surj[B],2B−2
) = Ω

(
B
)
.

Note that we can view the inputs of SurjΣ,A as binary strings of length = = A ·
⌈
log |Σ|

⌉
by

fixing some arbitrary binary encoding of the symbols in Σ. In what follows, we extend the

definition of Surj to every sufficiently large input length = as follows: Given = ∈ ℕ, we choose B

to be the largest number such that (2B − 2) ·
⌈
log B

⌉
≤ =, and define Surj= to be the function

that interprets its input as a string in [B]2B−2

and computes Surj[B],2B−2
on it. Lemma 8.5 now

implies that for every sufficiently large = ∈ ℕ we have AdvD(Surj=) = Ω
(

=
log =

)
. In particular,

this implies the same bound for the soft-adversary bound, i. e., AdvB(Surj=) = Ω
(

=
log =

)
. For

completeness, we provide an alternative proof for this lower bound on AdvB(Surj=) in Section B.

We turn to prove Theorem 1.1 using our special case of the KRW conjecture (Corollary 8.2).

Proof of Theorem 1.1. We would like to construct, for every sufficiently large = ∈ ℕ, a func-

tion ℎ= : {0, 1}= → {0, 1} that is computable by a formula with unbounded fan-in of depth 4

and size $(=3

log
3 =
) such that !(ℎ=) = Ω(=3−>(1)). We start by constructing the function ℎ= for

input lengths = of a special form, and then extend the construction to all sufficiently large input

lengths.

First, assume that the input length = is of the form 2
: · (: + 1), where : ∈ ℕ is sufficiently

large such that Surj
2
: is well-defined. The function ℎ= : {0, 1}= → {0, 1} takes two inputs: the

truth table of a function 5 : {0, 1}: → {0, 1}, and : strings G1 , . . . , G: ∈ {0, 1}2
:

. On such inputs,

the function � outputs

ℎ=(5 , G1 , . . . , G:) = (5 � Surj2:)(G1 , . . . , G:) = 5 (Surj
2
: (G1), . . . ,Surj2: (G:)) .

It is easy to see that the function ℎ= has input length =. We show that � can be computed by a

formula with unbounded fan-in of depth 4 and size $(=3

log
3 =
). We start by constructing a formula

for Surj
2
: . Recall that Surj

2
: takes as input (the binary encoding of) a string (�1 , . . . , �A) ∈ [B]A ,

where A, B = $(2:
:
). For simplicity, let us assume that every number in [B] is encoded by exactly

one binary string, and that if the binary input to Surj
2
: contains a binary string in {0, 1}dlog Be

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 35

http://dx.doi.org/10.4086/toc

YUVAL FILMUS, OR MEIR, AND AVISHAY TAL

that does not encode any number in [B], then we do not care what the formula outputs. Now,

observe that

Surj
2
: (�1 , . . . , �A) =

∧
�∈[B]

A∨
9=1

(�9 = �). (8.1)

It is not hard to see that the expression on the right-hand side can be implemented by a formula

with unbounded fan-in of depth 3 and size B · A ·
⌈
log B

⌉
= $

(
2

2:

:

)
. Next, observe that

ℎ=(5 , G1 , . . . , G:) =
∨

H∈{0,1}:

[
(5 (H) = 1) ∧

(
:∧
8=1

Surj
2
: (G8) = H8

)]
.

Using the foregoing formula for surjectivity, it is not hard to see that the expression on the

right-hand side can be implemented by a formula with unbounded fan-in of depth 4 and size

$

(
2
: · : · 2

2:

:

)
= $

(
2

3:
)
= $

(
=3

log
3 =

)
,

as required.

Finally, we prove that !(ℎ=) = Ω(=3−>(1)). To this end, let us hardwire the input 5 to be some

function from {0, 1}: to {0, 1} such that !(5) = Ω(2
:

log :
) (such a function exists by a well-known

counting argument, see [30, Theorem 1.23]). After hardwiring the input 5 , the function ℎ=
becomes exactly the function 5 �Surj

2
: . Now, by observing that Adv

2

B (Surj2:) = Ω̃ (!(Surj2:)) and
applying Corollary 8.2, it follows that

!(�) ≥ 1

$(:4) · ! (5)
1−$

(
1√

log !(5)

)
· !(Surj

2
:)

1−$
(

1√
log !(Surj

2
:)

)

≥ 1

$(:4) ·
(

2
:

log :

)
1−$

(
1√
:

)
·
(
2

2:

:2

)
1−$

(
1√
:

)

≥ 2
3:−>(1)

= =3−>(1) ,

as required.

It remains to deal with input lengths = that are not of the form 2
: · (: + 1). For such input

lengths =, we choose : to be the largest natural number such that 2
: · (: + 1) ≤ =, and proceed

as before. It can be verified that for this choice of : we have 2
: · (: + 1) = Θ(=), and therefore all

the foregoing asymptotic bounds continue to hold. �

Remark 8.6. We note that our methods cannot prove formula lower bounds that are better than

cubic. As explained in Remark 7.8, it holds that Adv
2

B (5) ≤ =2
. Thus, one cannot expect to obtain

a lower bound that is better than cubic by combining these measures with Andreev’s argument.

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 36

http://dx.doi.org/10.4086/toc

SHRINKAGE UNDER RANDOM PROJECTIONS

8.3 Reproving known formula lower bounds

The proof of Theorem 1.1 combines a lower bound on AdvB(Surj=) with an upper bound on

!(Surj=). More generally, we can prove the following result along similar lines.

Theorem 8.7. Let , : {0, 1}= → {0, 1} be an arbitrary function, and let : be an integer satisfying
: = log = +$(1). Let � : {0, 1}2:+=: → {0, 1} be a function on # = Θ(= log =) variables, whose input
consists of a function 5 : {0, 1}: → {0, 1} and : strings G1 , . . . , G: ∈ {0, 1}= , given by

�(5 , G1 , . . . , G:) = (5 � ,)(G1 , . . . , G:).

We call � the ,-based Andreev function.

1. If either Adv
2

B (,) or Khr(,) are at least Ω(=2−>(1)) then !(�) = Ω(#3−>(1)).

2. If !(,) = $(=2+>(1)) then !(�) = $(#3+>(1)).

The proof of Theorem 8.7 is very similar to the proof of Theorem 1.1, and so we leave it

to the reader (the only difference is that we may use Corollary 8.3 instead of Corollary 8.2).

Using Theorem 8.7, we can derive two known special cases: the original Andreev function (in

which , is Parity), and the variant considered in [17]. In particular, using the known facts that

Khr(Parity) ≥ =2
and Khr(Majority) ≥ Ω(=2) [33], we obtain the following results.

Corollary 8.8. The formula complexity of the Parity=-based Andreev function is Θ(#3±>(1)).

Corollary 8.9. For < ≥ 3 odd, let Majority= : {0, 1}< → {0, 1} be the Majority function. The formula
complexity of the Majority=-based Andreev function is Ω(#3−>(1)).

The best known upper bound on the formula complexity of Majority= is only $(=3.91) [52],
and so we do not expect Corollary 8.9 to be tight.

A Proof of Proposition 7.5

In this appendix, we prove Proposition 7.5, restated next.

Proposition 7.5. For any 5 : {0, 1}= → {0, 1} we have !(5) ≥ Adv
2

B (5).

Preliminaries

While the proof of Proposition 7.5 is fairly simple, it uses some basic concepts from information

theory which we review next.

Definition A.1. Let x , y, z be discrete random variables.

• The entropy of x is �(x) = EG←x

[
log

1

Pr[x=G]

]
.

• The conditional entropy of x given y is �(x | y) = EH←y [� (x | y = H)].

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 37

http://dx.doi.org/10.4086/toc

YUVAL FILMUS, OR MEIR, AND AVISHAY TAL

• The mutual information between x and y is �(x; y) = �(x) − �(x | y).

• The conditional mutual information between x and y given z is

�(x; y | z) = �(x | z) − �(x | y, z).

We use the following basic facts from information theory (see [11] for proofs).

Fact A.2. Let x , y, z be discrete random variables with finite supports, and let - denote the support of x.

• It holds that 0 ≤ �(x) ≤ log |- |.

• It holds that 0 ≤ �(x | y) ≤ �(x), where �(x | y) = 0 if and only if y determines x (i. e., x is a
function of y).

• If y determines x conditioned on z (i. e., x is a function of y and z) then �(y | z) ≥ �(x | z).

• It holds that 0 ≤ �(x; y) ≤ �(x). Similarly, we have 0 ≤ �(x; y | z) ≤ �(x | z), where
�(x; y | z) = 0 if and only if x and y are independent conditioned on any value of z.

• It holds that �(x; y) = �(y; x). Similarly, �(x; y | z) = �(y; x | z).

• The chain rule: It holds that

�(x; y, z | w) = �(x; z | w) + �(x; y | z,w).

Finally, we use the following result from the theory of interactive information complexity.

Claim A.3 ([5, Fact 4.15]). Let Π be a deterministic protocol. Suppose we invoke Π on random inputs x
and y for Alice and Bob, respectively, and let ℓ denote the random leaf that Π reaches on those inputs.
Then,

�(x , y; ℓ) ≥ �(x; ℓ | y) + �(y; ℓ | x).

Proof sketch. Let t denote the transcript of the protocol that is associated with ℓ. We prove that

�(x , y; t) ≥ �(x; t | y) + �(y; t | x), as this is equivalent to the claim. Suppose Alice speaks first,

and denote the (random) bit she sends by t1. We show that �(x , y; t1) ≥ �(x; t1 | y) + �(y; t1 | x).
Using the chain rule, we can write

�(x , y; t1) = �(y; t1) + �(x; t1 | y) ≥ �(x; t1 | y) = �(x; t1 | y) + �(y; t1 | x),

where the last equality follows since �(y; t1 | x) = 0, as Alice’s message t1 is independent of y
given her input x. Proceeding by induction on the coordinates of t using the chain rule finishes

the proof. �

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 38

http://dx.doi.org/10.4086/toc

SHRINKAGE UNDER RANDOM PROJECTIONS

The proof of Proposition 7.5

Our proof of Proposition 7.5 generalizes similar arguments in [32, 19]. Let Π be a protocol that

solves KW 5 . For every leaf ℓ of Π, we denote by 8ℓ the output of the protocol at leaf ℓ , so we

have 08ℓ ≠ 18ℓ any pair of inputs (0, 1) that reach the leaf ℓ . We prove that !(Π) ≥ Adv
2

B (5). Let
(a , b) be a distribution for 5 that attains AdvB(5), and let

@0 = max

1∈supp(b)
8∈[=]

Pr[a8 ≠ b8 | b = 1], @1 = max

0∈supp(a)
8∈[=]

Pr[a8 ≠ b8 | a = 0].

Let ℓ be the leaf that Π reaches on input (a , b). By Fact A.2, we have

�(ℓ; a , b) ≤ �(ℓ) ≤ log |!(Π)| .

On the other hand, Claim A.3 implies that

�(ℓ; a , b) ≥ �(ℓ; a | b) + �(ℓ; b | a).

Next, observe that a and b together determine ℓ, and that the event ℓ = ℓ implies that a8ℓ ≠ b8ℓ .
It follows that

�(ℓ; a | b) = �(ℓ | b) − �(ℓ | a , b) (by definition)

= �(ℓ | b) (a and b determine ℓ)

= Eℓ←ℓ ,1←b

[
log

1

Pr[ℓ = ℓ | b = 1]

���� b = 1] (Definition A.1)

≥ Eℓ←ℓ ,1←b

[
log

1

Pr[a8ℓ ≠ b8ℓ | b = 1]

���� b = 1]
≥ Eℓ←ℓ ,1←b

[
log

1

@0

���� b = 1] (Definition of @0)

= log

1

@0

Similarly, it can be shown that �(ℓ; b | a) ≥ log
1

@1

. By combining the foregoing equations, it

follows that

log |!(Π)| ≥ �(ℓ; a | b) + �(ℓ; b | a) ≥ log

1

@0

+ log

1

@1

,

and thus

|!(Π)| ≥ 1

@0

· 1

@1

= Adv
2

B (5),

as required.

RemarkA.4. Wenote that Proposition 7.5 can also be proved by observing that the soft-adversary

bound is a special case of the weighted adversary bound [3], which was shown to be a lower

bound on formula complexity by [38]. Alternatively, one could prove Proposition 7.5 (up to a

constant factor) by combining Lemma 7.6 along with Lemma 5.1 and Lemma 4.1.

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 39

http://dx.doi.org/10.4086/toc

YUVAL FILMUS, OR MEIR, AND AVISHAY TAL

B The min-entropy Khrapchenko bound

In this appendix, we describe a generalization of the Khrapchenko bound that provides a simple

lower bound technique for the soft-adversary bound. We then show how this generalization

can be used to give an alternative proof for the lower bound on the soft-adversary bound of the

surjectivity function. We start by recalling the original Khrapchenko bound.

Definition 7.9. Let 5 : {0, 1}= → {0, 1} be a non-constant function. For every two sets� ⊆ 5 −1(1)
and � ⊆ 5 −1(0), let �(�, �) be the set of pairs (0, 1) ∈ � × � such that 0 and 1 differ on exactly

one coordinate. The Khrapchenko bound of 5 is

Khr(5) = max

�⊆ 5 −1(1),�⊆ 5 −1(0)

|�(�, �)|2

|�| · |�| .

The Khrapchenkomeasure can be viewed as follows: Consider the subgraph of theHamming

cube that consists only of the cut between � and �. Then, the measure
|�(�,�)|2
|�|·|�| is the product of

the average degree of a vertex in � (which is
|�(�,�)|
|�|) and the average degree of a vertex in �

(which is
|�(�,�)|
|�|). Note that the average degree of � can also be described as the average, over

all strings 0 ∈ �, of the number of coordinates 8 ∈ [=] such that if we flip the 8-th bit of 0 we get

a string in �. We generalize the Khrapchenko measure as follows:

• Whereas the Khrapchenko bound maximizes over all cuts (�, �) of the Hamming cube

with � ⊆ 5 −1(1) and � ⊆ 5 −1(0), we are maximizing over all distributions over edges (a , b)
of the Hamming cube, where a ∈ 5 −1(1) and b ∈ 5 −1(0).

• Whereas the Khrapchenko bound considers the average number of coordinates 8 as

described above, we consider the min-entropy of the coordinate i on which a , b differ.

• Whereas the Khrapchenko bound considers functions whose inputs are binary strings, we

consider inputs that are strings over arbitrary finite alphabets.

Our generalization uses the following notion: The conditional min-entropy of a random variable x
conditioned on a random variable y is �∞(x | y) = minG,H log

1

Pr[x=G |y=H] . We can now define

our generalization formally:

Definition B.1. Let Σ be a finite alphabet, and let 5 : Σ= → {0, 1} be a non-constant Boolean

function. We say that a distribution (a , b) on 5 −1(1) × 5 −1(0) is a Khrapchenko distribution for 5 if
a and b always differ on a unique coordinate i ∈ [=]. We define the min-entropy Khrapchenko
bound of 5 , which we denote Khr�∞(5), to be the maximum of the quantity

2
�∞(i |a)+�∞(i |b)

over all Khrapchenko distributions (a , b) for 5 .

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 40

http://dx.doi.org/10.4086/toc

SHRINKAGE UNDER RANDOM PROJECTIONS

As noted above, the min-entropy Khrapchenko bound can be used to lower bound the the

soft-adversary bound. In order to define the adversary bound of a function 5 : Σ= → {0, 1}
over a non-boolean alphabet Σ, we view 5 as if its input is a binary string in {0, 1}=·dlog|Σ|e

that

encodes a string in Σ= via some fixed encoding (the choice of the encoding does not matter for

what follows).

Lemma B.2. For every non-constant function 5 : Σ= → {0, 1} we have AdvB(5) ≥
√

Khr�∞(5).

Proof. Let (a , b) be a Khrapchenko distribution that attains Khr�∞(5). Let i ∈ [=] be the unique
index at which a , b differ, and let a8 , 9 , b8 , 9 be the 9-th bits of the binary encoding of a8 , b8 ∈ Σ.
For any 0 ∈ supp(a) and (8 , 9) ∈ [=] × [dlog |Σ|e], we have

Pr[a8 , 9 ≠ b8 , 9 | a = 0] ≤ Pr[a8 ≠ b8 | a = 0] = Pr[i = 8 | a = 0] ≤ 2
−�∞(i |a).

It follows that the first factor in the definition of AdvB is at least 2
�∞(i |a)

. Similarly, the second

factor is at least 2
�∞(i |b)

, and so the entire expression is at least

√
Khr�∞(5). �

Similarly to the original Khrapchenko bound, the min-entropy Khrapcehnko bound too

gives a lower bound on the formula complexity !(5), which can be proved by combining

Proposition 7.5 and Lemma B.2. Again, in order to define the formula complexity of a function

5 : Σ= → {0, 1} over a non-boolean alphabet, we view 5 as if its input is a binary string

in {0, 1}=·dlog|Σ|e
.

Corollary B.3. Let Σ be a finite alphabet, and let 5 : Σ= → {0, 1} be a non-constant Boolean function.
Then !(5) ≥ Khr�∞(5).

By combining Lemmas 7.6 and B.2, it also follows that the min-entropy Khrapchenko bound too

can be used for constructing hiding projections.

Corollary B.4. Let Σ be a finite alphabet, let 5 : Σ= → {0, 1} be a non-constant Boolean function. There
is a @-hiding projection 0 to a single variable H such that @ =

√
1/Khr�∞(5) and such that 5 |0 is a

non-constant function with probability 1.

B.1 Lower bound on the surjectivity function

In order to demonstrate the usefulness of the min-entropy Khrapchenko bound, we use it to

prove a lower bound on the surjectivity function from Section 8.2. This implies a similar bound

on the soft-adversary bound of the surjectivity function, and provides an alternative way for

proving our main theorem.

Definition 8.4. Let Σ be a finite alphabet, and let A ∈ ℕ be such that A ≥ |Σ|. The surjectivity
function SurjΣ,A : ΣA → {0, 1} interprets its input as a function from [A] to Σ, and outputs whether

the function is surjective. In other words, Surj(�1 , . . . , �A) = 1 if and only if every symbol in Σ

appears in (�1 , . . . , �A).

Lemma B.5. For every B ∈ ℕ, we have Khr�∞(Surj[2B+1],3B+1
) = Ω

(
B2

)
.

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 41

http://dx.doi.org/10.4086/toc

YUVAL FILMUS, OR MEIR, AND AVISHAY TAL

Proof. Let B ∈ ℕ, let Σ = [2B + 1], and let Surj = SurjΣ,3B+1
. We define a Khrapchenko distribu-

tion (a , b) for Surj as follows. The input b ∈ Surj−1(0) is a uniformly distributed string in Σ3B+1

in which B + 1 of the symbols in Σ appear exactly twice, B − 1 of the symbols in Σ appear exactly

once, and the remaining symbol in Σ does not appear at all. The string a is sampled by choosing

uniformly at random a coordinate i such that bi is one of the symbols that appear twice in b,
and replacing bi with the unique symbol in Σ that does not appear in b.

We turn to bound �∞(i | b) and �∞(i | a). First, observe that conditioned on any choice

of b, the coordinate i is uniformly distributed among 2B + 2 coordinates, and therefore

�∞(i | b) = log(2B + 2).

In order to bound �∞(i | a), observe that a is distributed like a uniformly distributed string

inΣ3B+1
in which B+1 of the symbols inΣ appear exactly once, and the remaining B symbols inΣ

appear exactly twice. Conditioned on any choice of a, the coordinate i is uniformly distributed

over the B + 1 coordinates of symbols that appear exactly once. It follows that

�∞(i | a) ≥ log(B + 1).

We conclude that

Khr�∞(Surj=) ≥ 2
�∞(i |a)+�∞(i |b) ≥ (B + 1) · (2B + 2) = Ω

(
B2

)
. �

Lemma B.5 implies, via Corollary B.3 a quadratic lower bound on the formula complexity

of Surj. The same result also follows from the lower bound on the adversary bound of Surj due
to [6] (Lemma 8.5).

B.1.1 Comparison to the Khrapchenko bound

We now further compare the min-entropy Khrapchenko bound to the original Khrapchenko

bound. Observe that when Σ = {0, 1}, the min-entropy �∞(i | a) is exactly the min-entropy of a

random neighbor of a. In particular, when (a , b) is the uniform distribution over a set of edges,

the min-entropy �∞(i | a) is the logarithm of the minimal degree of a vertex 0. Moreover, if

the latter set of edges also induces a regular graph, then the measure 2
�∞(i |a)+�∞(i |b)

coincides

exactly with the original measure
|�(�,�)|2
|�|·|�| of Khrapchenko. More generally, when Σ = {0, 1}, the

bound Khr�∞(5) is within a constant factor of the original Khrapchenko bound, as we show in

Section C.

Proposition B.6. For any non-constant function 5 : {0, 1}= → {0, 1} it holds that
Khr(5)

4
≤ Khr�∞(5) ≤ Khr(5).

Unfortunately, when Σ is a larger alphabet, the connection between Khr�∞(5) and the

measure
|�(�,�)|2
|�| |�| is not so clean. Specifically, the min-entropy �∞(i | a) has no clear connection

to the degree of a, since the vertex a may have multiple neighbors that correspond to the same

coordinate i.

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 42

http://dx.doi.org/10.4086/toc

SHRINKAGE UNDER RANDOM PROJECTIONS

B.1.2 Previous work on the Khrapchenko bound

Several versions of the Khrapchenko bound appeared in the literature: Zwick [58] generalized

the Khrapchenko bound such that different input coordinates can be given different weights,

and Koutsoupias [36] gave a spectral generalization of the bound. The paper of Håstad [23]

observed that his analogue of Lemma 4.1 can be viewed as a generalization of the Khrapchenko

bound. Ganor, Komargodski, and Raz [18] considered a variant of the Khrapchenko bound

in which the edges of the Boolean hypercube are replaced with random walks on the noisy

hypercube. Of particular relevance is a paper of Laplante, Lee, and Szegedy [38] that defined a

complexity measure that is very similar to our min-entropy Khrapchenko bound, except that

the entropy is replaced with Kolmogorov complexity.

B.1.3 An entropy Khrapchenko bound

It is possible to generalize the complexity measure Khr�∞ by replacing the min-entropy in

Definition B.1 with Shannon entropy. Such a measure would still give a lower bound on formula

complexity — specifically, the proof of Corollary B.3 would go through without a change.

However, we do not know how to use such a measure for constructing hiding projections as in

Corollary B.4. We note that it is easy to prove that such a measure is an upper bound on Khr�∞ .

C Proof of Propositions B.6 and 7.11

In this appendix we prove Propositions B.6 and 7.11, restated next.

Proposition B.6. For any 5 : {0, 1}= → {0, 1} we have Khr(5)
4
≤ Khr�∞(5) ≤ Khr(5).

Proposition 7.11. For any 5 : {0, 1}= → {0, 1} we have
√

Khr(5)
4
≤ AdvD(5).

We relate Khr(5) to Khr�∞(5) using an auxiliary measure Khrmin(5):

Khrmin(5) = max

�⊆ 5 −1(1),�⊆ 5 −1(0)

(
min

0∈�
|�(0, �)| ·min

1∈�
|�(�, 1)|

)
,

where �(0, �) = �({0}, �) and similarly �(�, 1) = �(�, {1}).
We first show that Khrmin(5) and Khr(5) are equal up to constants.

Claim C.1. For any 5 : Σ= → {0, 1} we have Khr(5)
4
≤ Khrmin(5) ≤ Khr(5).

Proof. The inequality Khrmin(5) ≤ Khr(5) is simple since min0∈� |�(0, �)| ≤ |�(�, �)|/|�| and
similarly min1∈� |�(�, 1)| ≤ |�(�, �)|/|�|.

The other direction is more subtle. For ease of notation, for any sets � ⊆ 5 −1(1) and
� ⊆ 5 −1(0)we write Khr(�, �) = |�(�,�)|

2

|�| |�| . Thus,

Khr(5) = max

�⊆ 5 −1(1),�⊆ 5 −1(0)
Khr(�, �). (C.1)

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 43

http://dx.doi.org/10.4086/toc

YUVAL FILMUS, OR MEIR, AND AVISHAY TAL

Assume that � and � are sets that maximize Khr(�, �) in Equation C.1. We show that

∀0 ∈ � : |�(0, �)| ≥ |�(�,�)|
2|�| , (C.2)

∀1 ∈ � : |�(�, 1)| ≥ |�(�,�)|
2|�| . (C.3)

In words, the min-degree is at least half the average degree. Before showing why Equations C.2

and C.3 hold, we show that they imply the statement of the claim. Indeed,

Khrmin(5) ≥
(
min

0∈�
|�(0, �)| ·min

1∈�
|�(�, 1)|

)
≥ |�(�,�)|

2|�| ·
|�(�,�)|

2|�| =
Khr(�,�)

4
=

Khr(5)
4

.

It remains to show that Equations C.2 and C.3 hold. We focus on Equation C.2 due to

symmetry. Assume by contradiction that there exists an 0 ∈ � for which

|�(0, �)| < |�(�,�)|
2|�| .

It must be the case that |�| > 1, as otherwise � contains only one element and |�(0, �)| =
|�(�, �)|/|�| for this element. Consider now the set �′ = � \ {0} — which is non-empty by

the above discussion. We claim that Khr(�′, �) > Khr(�, �), contradicting the choice of �, �.

Indeed,

Khr(�′, �) = |�(�
′, �)|2

|�′ | |�|

=
(|�(�, �)| − |�(0, �)|)2

(|�| − 1)|�|

>
(|�(�, �)| − |�(�,�)|

2|�|)
2

(|�| − 1)|�| (By assumption on 0)

=
|�(�, �)|2 · (1 − 1

2|�|)
2

|�| |�| · (1 − 1

|�|)

= Khr(�, �) ·
(1 − 1

2|�|)
2

(1 − 1

|�|)
> Khr(�, �). �

It turns out that over the binary alphabet, Khrmin(5) and Khr�∞(5) coincide.

Claim C.2. For any 5 : {0, 1}= → {0, 1} we have Khr�∞(5) = Khrmin(5).

Proof. We first show that Khr�∞(5) ≥ Khrmin(5). Let �, � be sets that maximize the expression

(min0∈� |�(0, �)| ·min1∈� |�(�, 1)|). We take (a , b) to be a uniformly distributed pair in �(�, �).
It is not hard to see that

2
�∞(i |a) = 2

�∞(b |a) = min

0∈�
|�(0, �)|,

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 44

http://dx.doi.org/10.4086/toc

SHRINKAGE UNDER RANDOM PROJECTIONS

and similarly 2
�∞(i |b) = min1∈� |�(�, 1)|. We thus get Khr�∞(5) ≥ Khrmin(5).

Next, we show the other direction, Khrmin(5) ≥ Khr�∞(5). Let (a , b) be a random vari-

able distributed according to a Khrapchenko distribution for 5 that attains the maximum of

2
�∞(a |b)+�∞(b |a)

over all such distributions. Let � := supp(a) and � := supp(b) be the supports
of a and b, respectively. By definition of �∞ we have 2

�∞(a |b) = 1

max0,1 Pr[a=0 |b=1] . Rearranging,

we get that for any 1 in the support of b it holds that

Pr[a = 0 | b = 1] ≤ 1/2�∞(a |b).

In particular, since theses probabilities sum to 1, it must be the case that there are at least 2
�∞(a |b)

neighbors of 1 in �— i. e., |�(�, 1)| ≥ 2
�∞(a |b)

for all 1 ∈ �. Similarly, |�(0, �)| ≥ 2
�∞(b |a)

for all

0 ∈ �. The two sets � and � show that Khrmin(5) ≥ 2
�∞(a |b) · 2�∞(b |a) = Khr�∞(5). �

Proposition B.6 follows by combining these two claims. Proposition 7.11 follows from

Claim C.2 using the following simple observation.

Claim C.3. For any 5 : {0, 1}= → {0, 1} we have AdvD(5) ≥
√

Khrmin(5).

Proof. Let �, � be sets that attain Khrmin(5). Define ' to be the set of pairs (0, 1) ∈ � × � that

differ at a single coordinate. Thus |'(0, �)| = |�(0, �)| and |'(�, 1)| = |�(�, 1)|. Moreover,

|'8(0, �)| ≤ 1 since there is a unique 1 that differs from 0 only on the 8-th coordinate. Similarly,

|'8(�, 1)| ≤ 1. The claim now immediately follows by comparing the definitions of Khrmin(5)
and AdvD(5). �

Acknowledgements

A. T. would like to thank Igor Carboni Oliveira for bringing the question of proving formula size

lower bounds for GI0
to his attention. We are also grateful to Robin Kothari for posing this open

question on “Theoretical Computer Science Stack Exchange” [35], and to Kaveh Ghasemloo and

Stasys Jukna for their feedback on this question. We would like to thank Anna Gál for very

helpful discussions, and Gregory Rosenthal for helpful comments on the manuscript. Finally,

we are grateful to anonymous referees for comments that improved the presentation of this

work.

This work was partly carried out while the authors were visiting the Simons Institute for

the Theory of Computing in association with the DIMACS/Simons Collaboration on Lower

Bounds in Computational Complexity, which is conducted with support from the National

Science Foundation.

References

[1] Miklós Ajtai: Σ1

1
-formulae on finite structures. Ann. Pure Appl. Logic, 24(1):1–48, 1983.

[doi:10.1016/0168-0072(83)90038-6] 4

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 45

http://dx.doi.org/10.1016/0168-0072(83)90038-6
http://dx.doi.org/10.4086/toc

YUVAL FILMUS, OR MEIR, AND AVISHAY TAL

[2] Andris Ambainis: Quantum lower bounds by quantum arguments. J. Comput. System Sci.,
64(4):750–767, 2002. Special issue on STOC 2000 (Portland, OR). [doi:10.1006/jcss.2002.1826]

4, 29

[3] Andris Ambainis: Polynomial degree vs. quantum query complexity. J. Comput. System Sci.,
72(2):220–238, 2006. [doi:10.1016/j.jcss.2005.06.006] 31, 39

[4] Alexander E. Andreev: On a method for obtaining more than quadratic effective lower

bounds for the complexity of �-schemes. Moscow University Mathematics Bulletin, 42(1):24–
29, 1987. Vestnik Moskov. Univ. Ser. 1: Mat. Mekh. 1987(1) 70–73 (Russian original on

Math-net.ru) MR 0883632. 2, 12, 35

[5] Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao: How to compress interactive

communication. SIAM J. Comput., 42(3):1327–1363, 2013. [doi:10.1137/100811969] 38

[6] Paul Beame and Widad Machmouchi: The quantum query complexity of AC
0
. Quantum

Inf. Comput., 12(7–8):670–676, 2012. [doi:10.26421/QIC12.7-8-11] 4, 12, 13, 35, 42

[7] Maria Luisa Bonet and Samuel R. Buss: Size-depth tradeoffs for Boolean formulae. Inform.
Process. Lett., 49(3):151–155, 1994. [doi:10.1016/0020-0190(94)90093-0] 7

[8] Richard P. Brent: The parallel evaluation of general arithmetic expressions. J. ACM,

21(2):201–206, 1974. [doi:10.1145/321812.321815] 7

[9] Harry Buhrman and Ronald de Wolf: Complexity measures and decision tree complexity:

a survey. Theoret. Comput. Sci., 288(1):21–43, 2002. [doi:10.1016/S0304-3975(01)00144-X] 29

[10] Andrew M. Childs, Shelby Kimmel, and Robin Kothari: The quantum query complexity of

read-many formulas. In Proc. 20th Eur. Symp. Algorithms (ESA’12), pp. 337–348. Springer,
2012. [doi:10.1007/978-3-642-33090-2_30] 4

[11] Thomas M. Cover and Joy A. Thomas: Elements of Information Theory. Wiley-Interscience,

1991. [doi:10.1002/047174882X] 38

[12] Susanna F. de Rezende, Or Meir, Jakob Nordström, Toniann Pitassi, and Robert Robere:

KRW composition theorems via lifting. In Proc. 61st FOCS, pp. 43–49. IEEE Comp. Soc.,

2020. [doi:10.1109/FOCS46700.2020.00013, ECCC:TR20-099] 4

[13] Irit Dinur and Or Meir: Toward the KRW composition conjecture: Cubic formula

lower bounds via communication complexity. Comput. Complexity, 27(3):375–462, 2018.
[doi:10.1007/s00037-017-0159-x] 4

[14] Jeff Edmonds, Russell Impagliazzo, Steven Rudich, and Jirí Sgall: Communication

complexity towards lower bounds on circuit depth. Comput. Complexity, 10(3):210–246, 2001.
[doi:10.1007/s00037-001-8195-x] 4

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 46

http://dx.doi.org/10.1006/jcss.2002.1826
http://dx.doi.org/10.1016/j.jcss.2005.06.006
https://mi.mathnet.ru/vmumm3034
https://mi.mathnet.ru/vmumm3034
https://mathscinet.ams.org/mathscinet/article?mr=0883632
http://dx.doi.org/10.1137/100811969
http://dx.doi.org/10.26421/QIC12.7-8-11
http://dx.doi.org/10.1016/0020-0190(94)90093-0
http://dx.doi.org/10.1145/321812.321815
http://dx.doi.org/10.1016/S0304-3975(01)00144-X
http://dx.doi.org/10.1007/978-3-642-33090-2_30
http://dx.doi.org/10.1002/047174882X
http://dx.doi.org/10.1109/FOCS46700.2020.00013
https://eccc.weizmann.ac.il/report/2020/099
http://dx.doi.org/10.1007/s00037-017-0159-x
http://dx.doi.org/10.1007/s00037-001-8195-x
http://dx.doi.org/10.4086/toc

SHRINKAGE UNDER RANDOM PROJECTIONS

[15] Yuval Filmus, Or Meir, and Avishay Tal: Shrinkage under random projections, and cubic

formula lower bounds for AC0 (extended abstract). In Proc. 12th Innovations in Theoret.
Comp. Sci. Conf. (ITCS’21), pp. 89:1–7. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,

2021. [doi:10.4230/LIPIcs.ITCS.2021.89]

[16] Merrick L. Furst, James B. Saxe, and Michael Sipser: Parity, circuits, and the polynomial-

time hierarchy. Math. Sys. Theory, 17(1):13–27, 1984. [doi:10.1007/BF01744431] 4

[17] Anna Gál, Avishay Tal, and Adrian Trejo Nuñez: Cubic formula size lower bounds

based on compositions with majority. In Proc. 10th Innovations in Theoret. Comp. Sci.
Conf. (ITCS’19), pp. 35:1–35:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019.

[doi:10.4230/LIPIcs.ITCS.2019.35] 5, 6, 37

[18] Anat Ganor, Ilan Komargodski, and Ran Raz: The spectrum of small DeMorgan formulas.

Electron. Colloq. Comput. Complexity, TR12-174, 2012. [ECCC] 43

[19] Dmitry Gavinsky, Or Meir, Omri Weinstein, and Avi Wigderson: Toward better formula

lower bounds: The composition of a function and a universal relation. SIAM J. Comput.,
46(1):114–131, 2017. [doi:10.1137/15M1018319] 3, 4, 39

[20] Mikael Goldmann and Johan Håstad: A simple lower bound for monotone clique using

a communication game. Inform. Process. Lett., 41(4):221–226, 1992. [doi:10.1016/0020-

0190(92)90184-W] 4

[21] Mika Göös and Toniann Pitassi: Communication lower bounds via critical block sensitivity.

SIAM J. Comput., 47(5):1778–1806, 2018. [doi:10.1137/16M1082007] 4

[22] Johan Håstad: Almost optimal lower bounds for small depth circuits. In S. Micali, editor,

Randomness and Computation, volume 5 of Adv. Computing Research, pp. 143–170. JAI Press,

1989. DSpace@MIT. Preliminary version in STOC’86. 4

[23] Johan Håstad: The shrinkage exponent of De Morgan formulas is 2. SIAM J. Comput.,
27(1):48–64, 1998. Preliminary version in FOCS’93. [doi:10.1137/S0097539794261556] 2, 3,

5, 8, 9, 15, 17, 19, 43

[24] Johan Håstad, Stasys Jukna, and Pavel Pudlák: Top-down lower bounds for depth-three

circuits. Comput. Complexity, 5(2):99–112, 1995. [doi:10.1007/BF01268140] 3

[25] Johan Håstad, Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan: An average-case

depth hierarchy theorem for Boolean circuits. J. ACM, 64(5):35:1–27, 2017. Preliminary

version in FOCS’15. [doi:10.1145/3095799] 6

[26] Johan Håstad and Avi Wigderson: Composition of the universal relation. In Jin yi Cai,

editor, Advances In Computational Complexity Theory, volume 13 of DIMACS Ser. in Discr.
Math., pp. 119–134. Amer. Math. Soc., 1993. [doi:10.1090/dimacs/013/07] 4

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 47

http://dx.doi.org/10.4230/LIPIcs.ITCS.2021.89
http://dx.doi.org/10.1007/BF01744431
http://dx.doi.org/10.4230/LIPIcs.ITCS.2019.35
https://eccc.weizmann.ac.il/report/2012/174
http://dx.doi.org/10.1137/15M1018319
http://dx.doi.org/10.1016/0020-0190(92)90184-W
http://dx.doi.org/10.1016/0020-0190(92)90184-W
http://dx.doi.org/10.1137/16M1082007
https://hdl.handle.net/1721.1/151177
https://doi.org/10.1145/12130.12132
https://doi.org/10.1109/SFCS.1993.366876
http://dx.doi.org/10.1137/S0097539794261556
http://dx.doi.org/10.1007/BF01268140
https://doi.org/10.1109/FOCS.2015.67
http://dx.doi.org/10.1145/3095799
http://dx.doi.org/10.1090/dimacs/013/07
http://dx.doi.org/10.4086/toc

YUVAL FILMUS, OR MEIR, AND AVISHAY TAL

[27] Johan Torkel Håstad: Computational limitations of small-depth circuits. Ph.D. thesis, MIT,

1986. Available on author’s website, published as a book by MIT Press, 1987. 6

[28] Peter Høyer, Troy Lee, and Robert Špalek: Negative weights make adversaries stronger.

In Proc. 39th STOC, pp. 526–535. ACM Press, 2007. [doi:10.1145/1250790.1250867] 31

[29] Russell Impagliazzo and Noam Nisan: The effect of random restrictions on formula size.

Random Struct. Algor., 4(2):121–134, 1993. [doi:10.1002/rsa.3240040202] 2

[30] Stasys Jukna: Boolean Function Complexity – Advances and Frontiers. Volume 27 of Algorithms
and Combinatorics. Springer, 2012. [doi:10.1007/978-3-642-24508-4] 4, 36

[31] Mauricio Karchmer, Ran Raz, and Avi Wigderson: Super-logarithmic depth lower bounds

via the direct sum in communication complexity. Comput. Complexity, 5(3–4):191–204, 1995.
[doi:10.1007/BF01206317] 3, 4, 33

[32] Mauricio Karchmer and Avi Wigderson: Monotone circuits for connectivity require

super-logarithmic depth. SIAM J. Discr. Math., 3(2):255–265, 1990. [doi:10.1137/0403021] 3,
4, 7, 39

[33] Valerii Mikhailovich Khrapchenko: A method of obtaining lower bounds for the complex-

ity of �-schemes. Math. Notes. Acad. Sci. USSR (English translation), 10:474–479, 1971. Matem.

Zametki 10(1) 83-92, 1971 (Russian original on Math-net.ru). [doi:10.1007/BF01747074] 2,

29, 32, 37

[34] Sajin Koroth and Or Meir: Improved composition theorems for functions and relations.

In Proc. 22nd Internat. Conf. on Randomization and Computation (RANDOM’18), pp. 48:1–18.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018. [doi:10.4230/LIPIcs.APPROX-

RANDOM.2018.48] 4

[35] Robin Kothari: Formula size lower bounds for AC0 functions, 2011. Theoretical Computer

Science Stack Exchange. 45

[36] Elias Koutsoupias: Improvements on Khrapchenko’s theorem. Theoret. Comput. Sci.,
116(2):399–403, 1993. [doi:10.1016/0304-3975(93)90330-V] 43

[37] Eyal Kushilevitz and Noam Nisan: Communication Complexity. Cambridge Univ. Press,

1997. [doi:10.1017/9781108671644] 6

[38] Sophie Laplante, Troy Lee, and Mario Szegedy: The quantum adversarymethod and classi-

cal formula size lower bounds. Comput. Complexity, 15(2):163–196, 2006. [doi:10.1007/s00037-
006-0212-7] 30, 31, 32, 39, 43

[39] Troy Lee, Rajat Mittal, Ben W. Reichardt, Robert Špalek, and Mario Szegedy: Quantum

query complexity of state conversion. In Proc. 52nd FOCS, pp. 344–353. IEEE Comp. Soc.,

2011. [doi:10.1109/FOCS.2011.75] 31

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 48

https://www.csc.kth.se/~johanh/thesis_with_figs.pdf
https://mitpress.mit.edu/9780262081672/computational-limitations-for-small-depth-circuits/
http://dx.doi.org/10.1145/1250790.1250867
http://dx.doi.org/10.1002/rsa.3240040202
http://dx.doi.org/10.1007/978-3-642-24508-4
http://dx.doi.org/10.1007/BF01206317
http://dx.doi.org/10.1137/0403021
https://mi.mathnet.ru/mzm7071
https://mi.mathnet.ru/mzm7071
http://dx.doi.org/10.1007/BF01747074
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.48
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.48
https://cstheory.stackexchange.com/questions/7156/formula-size-lower-bounds-for-ac0-functions
https://cstheory.stackexchange.com/questions/7156/formula-size-lower-bounds-for-ac0-functions
http://dx.doi.org/10.1016/0304-3975(93)90330-V
http://dx.doi.org/10.1017/9781108671644
http://dx.doi.org/10.1007/s00037-006-0212-7
http://dx.doi.org/10.1007/s00037-006-0212-7
http://dx.doi.org/10.1109/FOCS.2011.75
http://dx.doi.org/10.4086/toc

SHRINKAGE UNDER RANDOM PROJECTIONS

[40] Lily Li and Morgan Shirley: The general adversary bound: A survey, 2021.

[arXiv:2104.06380] 31

[41] Or Meir: Toward better depth lower bounds: Two results on the multiplexor relation.

Comput. Complexity, 29(1):4, 2020. [doi:10.1007/s00037-020-00194-8] 4

[42] Ivan Mihajlin and Alexander Smal: Toward better depth lower bounds: The XOR-

KRW conjecture. In Proc. 36th Comput. Complexity Conf. (CCC’21), pp. 38:1–24. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2021. [doi:10.4230/LIPIcs.CCC.2021.38] 4

[43] Èduard Ivanovič Nečiporuk: On a Boolean function. Soviet Math. Doklady, 7(4):999–1000,
1966. Doklady Akad. Nauk SSSR 169(4), 1966, 765–766 (Russian original on Math-net.ru). 4

[44] Mike Paterson and Uri Zwick: Shrinkage of DeMorgan formulae under restriction. Random
Struct. Algor., 4(2):135–150, 1993. [doi:10.1002/rsa.3240040203] 2

[45] Toniann Pitassi and Robert Robere: Strongly exponential lower bounds for

monotone computation. In Proc. 49th STOC, pp. 1246–1255. ACM Press, 2017.

[doi:10.1145/3055399.3055478] 4

[46] Ran Raz and Pierre McKenzie: Separation of the monotone NC hierarchy. Combinatorica,
19(3):403–435, 1999. [doi:10.1007/s004930050062] 4

[47] Ran Raz and Avi Wigderson: Monotone circuits for matching require linear depth. J. ACM,

39(3):736–744, 1992. [doi:10.1145/146637.146684] 4

[48] Alexander A. Razborov: Applications of matrix methods to the theory of lower bounds in

computational complexity. Combinatorica, 10(1):81–93, 1990. [doi:10.1007/BF02122698] 7

[49] Ben W. Reichardt: Span programs and quantum query complexity: the general adversary

bound is nearly tight for every Boolean function. In Proc. 50th FOCS, pp. 544–551. IEEE
Comp. Soc., 2009. [doi:10.1109/FOCS.2009.55] 31

[50] Ben W. Reichardt: Reflections for quantum query algorithms. In Proc. 22nd
Ann. ACM–SIAM Symp. on Discrete Algorithms (SODA’11), pp. 560–569. SIAM, 2011.

[doi:10.1137/1.9781611973082.44] 31

[51] Ben W. Reichardt: Span programs are equivalent to quantum query algorithms. SIAM J.
Comput., 43(3):1206–1219, 2014. [doi:10.1137/100792640] 31

[52] Igor Sergeevich Sergeev: Complexity and depth of formulas for symmetric Boolean

functions. Moscow University Mathematics Bulletin, 71(3):127–130, 2016. Vestnik

Moskov. Univ. Ser. 1: Mat. Mekh. 2016(3) 53–57 (Russian original on Math-net.ru).

[doi:10.3103/S0027132216030098] 37

[53] Robert Špalek and Mario Szegedy: All quantum adversary methods are equivalent. Theory
of Computing, 2(1):1–18, 2006. [doi:10.4086/toc.2006.v002a001] 30, 31

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 49

http://arxiv.org/abs/2104.06380
http://dx.doi.org/10.1007/s00037-020-00194-8
http://dx.doi.org/10.4230/LIPIcs.CCC.2021.38
http://mi.mathnet.ru/dan32449
http://dx.doi.org/10.1002/rsa.3240040203
http://dx.doi.org/10.1145/3055399.3055478
http://dx.doi.org/10.1007/s004930050062
http://dx.doi.org/10.1145/146637.146684
http://dx.doi.org/10.1007/BF02122698
http://dx.doi.org/10.1109/FOCS.2009.55
http://dx.doi.org/10.1137/1.9781611973082.44
http://dx.doi.org/10.1137/100792640
https://mi.mathnet.ru/vmumm155
https://mi.mathnet.ru/vmumm155
http://dx.doi.org/10.3103/S0027132216030098
http://dx.doi.org/10.4086/toc.2006.v002a001
http://dx.doi.org/10.4086/toc

YUVAL FILMUS, OR MEIR, AND AVISHAY TAL

[54] Philip M. Spira: On time-hardware complexity tradeoffs for Boolean functions. In Proc. 4th
Hawaii International Symposium on System Sciences, pp. 525–527. Western Periodicals, 1971.

Google books. 7

[55] Bella Abramovna Subbotovskaya: Realizations of linear functions by formulas using ∨, &,

−
. Soviet Math. Doklady, 2:110–112, 1961. Doklady Akad. Nauk SSSR 136(3), 553–555, 1961

(Russian original on Math-net.ru). 2

[56] Avishay Tal: Shrinkage of De Morgan formulae by spectral techniques. In Proc. 55th FOCS,
pp. 551–560. IEEE Comp. Soc., 2014. [doi:10.1109/FOCS.2014.65] 2, 3

[57] Andrew Chi-Chih Yao: Separating the polynomial-time hierarchy by oracles (preliminary

version). In Proc. 26th FOCS, pp. 1–10. IEEE Comp. Soc., 1985. [doi:10.1109/SFCS.1985.49] 4

[58] Uri Zwick: An extension of Khrapchenko’s theorem. Inform. Process. Lett., 37(4):215–217,
1991. [doi:10.1016/0020-0190(91)90191-J] 43

AUTHORS

Yuval Filmus

Associate Professor

Technion — Israel Institute of Technology

The Henry and Marilyn Taub Faculty of Computer Science

Faculty of Mathematics

Haifa 3200003, Israel

yuvalfi cs technion ac il

https://yuvalfilmus.cs.technion.ac.il/

Or Meir

Associate Professor

Department of Computer Science

University of Haifa

Haifa 3303220, Israel

ormeir cs haifa ac il

https://cs.haifa.ac.il/~ormeir/

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 50

https://books.google.com/books/about/Proceedings_Fourth_Hawaii_International.html?id=Y0zVjwEACAAJ
https://mi.mathnet.ru/dan24539
https://mi.mathnet.ru/dan24539
http://dx.doi.org/10.1109/FOCS.2014.65
http://dx.doi.org/10.1109/SFCS.1985.49
http://dx.doi.org/10.1016/0020-0190(91)90191-J
https://yuvalfilmus.cs.technion.ac.il/
https://cs.haifa.ac.il/~ormeir/
http://dx.doi.org/10.4086/toc

SHRINKAGE UNDER RANDOM PROJECTIONS

Avishay Tal

Assistant Professor

Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

Berkeley, CA 94720, United States

atal berkeley edu

https://www.avishaytal.org/

ABOUT THE AUTHORS

Yuval Filmus received his Ph.D. from theUniversity of Toronto under the supervision

of Toni Pitassi. Subsequently, he held postdoctoral positions at the Simons

Institute for the Theory of Computing and the Institute for Advanced Study. He

is interested in Boolean function analysis, complexity theory, and combinatorics.

Or Meir received his Ph.D. from the Weizmann Institute of Science under the

supervision of Oded Goldreich. Subsequently, he held postdoctoral positions

at Stanford University, the Institute for Advanced Study, and the Weizmann

Institute of Science. He is interested in complexity theory, and in particular in

circuit complexity, communication complexity, coding theory, probabilistic proof

systems, and the theory of pseudorandomness.

Avishay Tal received his M. Sc. from the Technion under the supervision of

Amir Shpilka, and his Ph.D. from the Weizmann Institute of Science under

the supervision of Ran Raz. Subsequently, he held postdoctoral positions

at the Institute for Advanced Study, the Simons Institute for the Theory of

Computing, and StanfordUniversity. He is interested inBoolean function analysis,

complexity theory and combinatorics, and in particular in circuit complexity,

query complexity, computational learning theory, quantum complexity, and the

theory of pseudorandomness.

THEORY OF COMPUTING, Volume 19 (7), 2023, pp. 1–51 51

https://www.avishaytal.org/
http://dx.doi.org/10.4086/toc

	Introduction
	Background
	The KRW Conjecture
	Bottom-up versus top-down techniques

	Our results
	An example: our techniques when specialized to fMajoritym

	Related work
	Paper outline

	Preliminaries
	Main results
	Fixing projections
	Hiding projections
	Sketch: Cubic formula lower bound for AC0
	Lower bound for the surjectivity function
	Lower bound for f o surj_n
	Cubic lower bound for AC0

	Proof of shrinkage theorem for fixing projections
	Proof of Lemma 4.1
	Proof of Lemma 4.4
	Proof of Lemma 4.6

	Proof of shrinkage theorem for hiding projections
	Proof of Lemma 5.1

	Joining projections
	Hiding projections from complexity measures
	The soft-adversary method
	Khrapchenko bound

	Applications
	Application to the KRW conjecture
	Formula lower bounds for AC0
	Reproving known formula lower bounds

	Proof of Proposition 7.5
	The min-entropy Khrapchenko bound
	Lower bound on the surjectivity function
	Comparison to the Khrapchenko bound
	Previous work on the Khrapchenko bound
	An entropy Khrapchenko bound

	Proof of Propositions B.6 and 7.11
	References

