
THEORY OF COMPUTING, Volume 18 (23), 2022, pp. 1–24
www.theoryofcomputing.org

Pure Entropic Regularization for Metrical

Task Systems

Christian Coester
∗

James R. Lee
†

Received July 23, 2019; Revised October 8, 2020; Published December 29, 2022

Abstract. We show that on every =-point HST metric, there is a randomized online

algorithm for metrical task systems (MTS) that is 1-competitive for service costs and

$(log =)-competitive for movement costs. In general, these refined guarantees are

optimal up to the implicit constant. While an $(log =)-competitive algorithm for

MTS on HSTmetrics was developed by Bubeck et al. (SODA’19), that approach could

only establish an $((log =)2)-competitive ratio when the service costs are required

to be $(1)-competitive. Our algorithm can be viewed as an instantiation of online

mirror descent with the regularizer derived from a multiscale conditional entropy.

In fact, our algorithm satisfies a set of even more refined guarantees; we are able

to exploit this property to combine it with known random embedding theorems and

obtain, for any =-point metric space, a randomized algorithm that is 1-competitive

for service costs and $((log =)2)-competitive for movement costs.

An extended abstract of this paper appeared in the Proceedings of the 32nd Ann. Conference on Learning

Theory (COLT 2019) [17].

∗
Supported by EPSRC Award 1652110. Part of this work was carried out while C. Coester was visiting the

University of Washington, hosted by J. R. Lee.

†
Supported by NSF grants CCF-1616297 and CCF-1407779 and a Simons Investigator Award

ACM Classification: F.2.0

AMS Classification: 68W27

Key words and phrases: online algorithms, competitive analysis, mirror descent, metrical task

systems, decision making under uncertainty

© 2022 Christian Coester and James R. Lee
cb Licensed under a Creative Commons Attribution License (CC-BY) DOI: 10.4086/toc.2022.v018a023

http://dx.doi.org/10.4086/toc
http://proceedings.mlr.press/v99/
http://proceedings.mlr.press/v99/
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2022.v018a023

CHRISTIAN COESTER AND JAMES R. LEE

1 Introduction

Let (-, 3-) be a finite metric space with |- | = = > 1. The Metrical Task Systems (MTS) problem,

introduced in [11] is described as follows. The input is a sequence 〈2C : - → ℝ+ : C ≥ 1〉 of
nonnegative cost functions on the state space -. At every time C, an online algorithm maintains

a state �C ∈ -.

The corresponding cost is the sum of a service cost 2C(�C) and a movement cost 3-(�C−1 , �C).
Formally, an online algorithm is a sequence of mappings 1 = 〈�1 , �2 , . . . , 〉 where, for every C ≥ 1,

�C : (ℝ-
+)C → - maps a sequence of cost functions 〈21 , . . . , 2C〉 to a state. The initial state �0 ∈ -

is fixed. The total cost of the algorithm 1 in servicing c = 〈2C : C ≥ 1〉 is defined as:

cost1(c) :=
∑
C≥1

[2C(�C(21 , . . . , 2C)) + 3-(�C−1(21 , . . . , 2C−1), �C(21 , . . . , 2C))] .

The cost of the offline optimum, denoted cost
∗(c), is the infimum of

∑
C≥1
[2C(�C) + 3-(�C−1 , �C)]

over any sequence 〈�C : C ≥ 1〉 of states. A randomized online algorithm 1 is said to be -competitive
if for every �0 ∈ -, there is a constant � > 0 such that for all cost sequences c:

E
[
cost1(c)

]
≤ · cost

∗(c) + � .

For the =-point uniform metric, a simple coupon-collector argument shows that the com-

petitive ratio is Ω(log =), and this is tight [11]. A long-standing conjecture is that this Θ(log =)
competitive ratio holds for an arbitrary =-point metric space. The lower bound has almost

been established [8, 9]; for any =-point metric space, the competitive ratio is Ω(log =/log log =).
Following a long sequence of works (see, e. g., [20, 10, 7, 6, 19, 18]), an upper bound of$((log =)2)
was shown in [13].

Relation to adversarial multi-arm bandits MTS is naturally related to the adversarial setting of

the classical multi-arm bandits model in sequential decisionmaking, and provides a very general

framework for “bandits with switching costs.” Unlike in the setting of regret minimization,

where one competes against the best static strategy in hindsight (see, e. g., [12]), competitive

analysis compares the performance of an online algorithm to the best dynamical offline algorithm.

Thus this model emphasizes the importance of an adaptivity in the face of changing

environments. For MTS, the online algorithm has full information: access to the complete cost

function 2C is available when deciding on a point �C(21 , . . . , 2C) ∈ - at which to play. And yet

one of the fascinating relationships between MTS and adversarial bandits is the parallel between

adaptivity—beingwilling to “try out” new strategies—and the classical exploration/exploitation

tradeoff that occurs in models where one only has access to partial information about the loss

functions.

HST metrics The methods of [5] show that the competitive ratio for MTS is $(log =) on
weighted star metrics. Recently, the authors of [13] generalized this result by designing

an algorithm with competitive ratio $(D) log =) on any weighted =-point tree metric with

combinatorial depth D) . We now discuss a special class of metrics.

THEORY OF COMPUTING, Volume 18 (23), 2022, pp. 1–24 2

http://dx.doi.org/10.4086/toc

PURE ENTROPIC REGULARIZATION FOR METRICAL TASK SYSTEMS

Let) = (+, �) be a finite tree with root r and vertex weights {FD > 0 : D ∈ +}, let ℒ ⊆ +
denote the leaves of), and suppose that the vertex weights on) are non-increasing along

root-leaf paths. Consider the metric space (ℒ , 3)), where 3)(ℓ , ℓ ′) is the weighted length of the

path connecting ℓ and ℓ ′ when the edge from a node D to its parent is FD . We will use D) for

the combinatorial (i. e., unweighted) depth of).

(ℒ , 3)) is called an HST metric (or, equivalently for finite metric spaces, an ultrametric). If, for
some � > 1, the weights on) satisfy the stronger inequality FE ≤ FD/� whenever E is a child

of D, the space (ℒ , 3)) is said to be a �-HST metric. Such metric spaces play a special role in

MTS since every =-point metric space can be probabilistically approximated by a distribution

over such spaces [6, 18]. Indeed, the $((log =)2)-competitive ratio for general metric spaces

established in [13] is a consequence of their $(log =)-competitive algorithm for HSTs.

1.1 Refined guarantees

The authors of [4] observe that there is a more refined way to analyze competive algorithms for

MTS. For a randomized online algorithm 1 and a cost sequence c, we denote, respectively, S1(c)
and M1(c) for the (expected) service cost and movement cost, that is

S1(c) := E
∑
C≥1

2C(�C) and M1(c) := E
∑
C≥1

3-(�C−1 , �C) .

If there are numbers , ′, �, �′ > 0 such that for every cost c, it holds that

S1(c) ≤ · cost
∗(c) + �

M1(c) ≤ ′ · cost
∗(c) + �′,

one says that 1 is -competitive for service costs and ′-competitive for movement costs.
In [4], it is shown that on every =-point HST metric, and for every � > 0, there is an

online algorithm that is simultaneously (1 + �)-competitive for service costs and $((log(=/�))2)-
competitive for movement costs. The authors of [13] improve this slightly to show that

actually there is an online algorithm that is simultaneously 1-competitive for service costs and

$((log =)2)-competitive for movement costs. We obtain the optimal refined guarantees.

Theorem 1.1. On any =-point HSTmetric-, there is a randomized online algorithm that is 1-competitive
for service costs and $(log =)-competitive for movement costs.

Remark 1.2 (Optimality of the refined guarantees). Any finitely competitive algorithm for MTS

on an =-point uniform metric cannot be better than Ω(log =)-competitive for movement costs,

regardless of its competitive ratio for service costs. This is because this lower bound holds even

if the cost functions only take values 0 and∞. Moreover, it cannot be better than 1-competitive

for service costs, regardless of its competitive ratio for movement costs. To see this, consider the

case where each cost function is the constant function 1.

THEORY OF COMPUTING, Volume 18 (23), 2022, pp. 1–24 3

http://dx.doi.org/10.4086/toc

CHRISTIAN COESTER AND JAMES R. LEE

Finely competitive guarantees Suppose that for some numbers 0 , 1 , �, �, �′ > 0, a random-

ized online algorithm 1 satisfies, for every cost c and every offline algorithm 1∗:

S1(c) ≤ 0S1∗(c) + 1M1∗(c) + � (1.1)

M1(c) ≤ �S1(c) + �′ . (1.2)

In this case, we say that 1 is (0 , 1 , �)-finely competitive. We establish the following.

Theorem 1.3. On any =-point HST metric -, for every � ≥ 1, there is an online randomized algorithm
1 that is

(
1, 1/�, $(� log =)

)
-finely competitive. In fact, one can take � = 0 and �′ ≤ $(�diam(-)).

Combined with the random embedding from [18], this yields the following consequence for

general =-point metric spaces.

Corollary 1.4. On any =-point metric space, there is an online randomized algorithm that is 1-competitive
for service costs and $((log =)2)-competitive for movement costs.

Proof. Consider an =-point metric space (-, 3-). It is known [18] that there exists a random

HST metric (), 3)) so that ℒ()) = - and for all G, H ∈ -:

1. Pr[3)(G, H) ≥ 3-(G, H)] = 1,

2. E[3)(G, H)] ≤ � · 3-(G, H),
and � ≤ $(log =).

Let 1) be the randomized algorithm for (), 3)) guaranteed by Theorem 1.3 with � = �. Let

1 denote the algorithm that results from sampling (), 3)) and then using 1) . We use M)
to

denote movement cost measured in 3) and M-
for movement cost measured in 3- .

Then for any cost c and any offline algorithm 1∗, we have

S1(c) = E[S1) (c)] ≤ S1∗(c) + �−1 E[M)
1∗(c)] + $(1)

≤ S1∗(c) + �−1�M-
1∗(c) + $(1)

= S1∗(c) +M-
1∗(c) + $(1) ,

and

M-
1 (c) = E[M-

1) (c)] ≤ E[M)
1) (c)] ≤ $(� log =)E[S1) (c)] + $(1),

completing the proof. �

1.2 The fractional model on trees

We will work in the following deterministic fractional setting, which is equivalent to the

randomized integral setting described earlier (see [13, §2]). The state of a fractional algorithm is

given by a point in the polytope

K) :=

G ∈ ℝ+
+ : Gr = 1, GD =

∑
E∈"(D)

GE ∀D ∈ + \ ℒ
 , (1.3)

THEORY OF COMPUTING, Volume 18 (23), 2022, pp. 1–24 4

http://dx.doi.org/10.4086/toc

PURE ENTROPIC REGULARIZATION FOR METRICAL TASK SYSTEMS

where we use "(D) for the set of children of D in). For D ≠ r, we will also write p(D) for the
parent of D in).

A state G ∈ K) corresponds to the situation that the state of a randomized integral algorithm

is a leaf descendant of D with probability GD . Note that K) is simply an affine encoding of the

probability simplex on ℒ. In the fractional setting, changing from state G to G′ incurs movement

cost ‖G − G′‖ℓ1(F), where

‖I‖ℓ1(F) :=
∑
D∈+

FD |ID |

denotes the weighted ℓ1-norm on ℝ+
.

1.3 Mirror descent, metric filtrations, and regularization

Following [13], our algorithm is based on the mirror descent framework as established in [14].

This is a method for regularized online convex optimization, an approach that was previously

explored for competitive analysis in [1, 15].

A central component of mirror descent is choosing the appropriate mirror map (which we

will often refer to as the “regularizer”). This is a strictly convex functionΦ : K) → ℝ that endows

K) with a geometric (Riemannian) structure, specifying how to perform constrained vector flow.

In other words, it specifies how one can move in a preferred direction while remaining inside

K) .
The paper [13] employs the following regularizer:

Φ0(G) :=
1

�

∑
D∈+\{r}

FD (GD + �D) log (GD + �D) , (1.4)

with � = Θ(log |ℒ|) and �D = |ℒD |/|ℒ|, where ℒD is the set of leaves in the subtree rooted at D.

1.3.1 Metric filtrations

It is straightforward that one can think of Φ0 as a type of multiscale entropy (this is the negative
of the associated Shannon entropy, since we use the analyst’s convention that the entropy is

convex). To understand this notion, let us forget momentarily the weights on). Then the

structure of) gives a natural filtration over probability measures on the leaves ℒ. Suppose that
^ is a random variable taking values in ℒ and, for D ∈ + , denote by ℰD the event {^ ∈ ℒD}.
Then the chain rule for Shannon entropy yields∑

ℓ∈ℒ
Pr[ℰℓ] log

1

Pr[ℰℓ]
=

∑
D∈+\{r}

Pr[ℰD] log

Pr[ℰp(D)]
Pr[ℰD]

.

If we now imagine that uncertainty at higher scales is more costly than uncertainty at lower

scales, then we might define an analogous weighted entropy by∑
D∈+\{r}

FD Pr[ℰD] log

Pr[ℰp(D)]
Pr[ℰD]

. (1.5)

THEORY OF COMPUTING, Volume 18 (23), 2022, pp. 1–24 5

http://dx.doi.org/10.4086/toc

CHRISTIAN COESTER AND JAMES R. LEE

Such a notion is natural in the context of “metric learning” problems.

Ignoring the {�D} values for a moment, consider that (1.4) is not analogous to (1.5). Indeed,

it corresponds to the quantity ∑
D∈+\{r}

FD Pr[ℰD] log

1

Pr[ℰD]
, (1.6)

and now one can see a fundamental reason why the algorithm associated to (1.4) only achieves

an $(D) log =) competitive ratio, where D) is the combinatorial depth of): The quantity (1.6)

overmeasures the metric uncertainty.

Suppose that ^ is a uniformly random leaf. Then

∑
ℓ∈ℒ Pr[ℰℓ] log

1

Pr[ℰℓ] = log =, where

= = |ℒ|. But, in general, one could have

∑
D∈+ Pr[ℰD] log

1

Pr[ℰD] ≥ Ω(D) log =). This fact was not

lost on the authors of [13], but they bypass the problem by combining mirror descent on stars

with a recursive composition method called “unfair gluing.”

1.3.2 Multiscale conditional entropy

We employ a regularizer that is a more faithful analog of (1.5):

Φ(G) :=
∑

D∈+\{r}

FD

�D

(
GD + �DGp(D)

)
log

(
GD

Gp(D)
+ �D

)
, (1.7)

where p(D) denotes the parent of D.
If one ignores the additional parameters {�D ≥ 1, �D > 0}, this is precisely the negative

weighted Shannon entropy written according to the chain rule. Here, we set

�D :=
|ℒD |
|ℒp(D) |

(1.8)

�D := 1 + log(1/�D) (1.9)

�D := �D/�D . (1.10)

The numbers {�D} are the conditional probabilites of the uniform distribution on leaves.

The {�D} values are employed as “noise” added to the entropy calculation. Such noise is a

fundamental aspect for competitive analysis, and distinguishes it from the application of mirror

descent to regret minimization problems (see, e. g., [12]).1 The effect of these noise parameters

appears ubiquitously in applications of the primal-dual method to competitive analysis (see

[16]), and manifests itself as an additive term in the update rules (see equation (1.11) below).

Intuitively, it ensures that the conditional probability
GD
Gp(D)

is updated fast enough even when it

is close to 0.

Finally, the numbers {�D : D ∈ +} are commonly referred to as “learning rates” in the study

of online learning. They represent the rate at which information is discounted in the resulting

1One finds aspects of this “mixing with the uniform distribution” in the bandits setting as well, but used for

variance reduction, a seemingly very different purpose.

THEORY OF COMPUTING, Volume 18 (23), 2022, pp. 1–24 6

http://dx.doi.org/10.4086/toc

PURE ENTROPIC REGULARIZATION FOR METRICAL TASK SYSTEMS

algorithm; for MTS, this corresponds to the relative importance of costs arriving now vs. costs

that arrived in the past.

1.3.3 The dynamics

Wewill derive in Section 3 the following continuous time evolution of the resulting mirror descent

algorithm (G(C) ∈ K) : C ∈ [0,∞)) for a cost path 2 : [0,∞) → ℝℒ+ :

%C

(
GD(C)
Gp(D)(C)

)
=

�D
FD

(
GD(C)
Gp(D)(C)

+ �D
) (

�p(D)(C) −
∑
ℓ∈ℒD

Gℓ (C)
GD(C)

2ℓ (C)
)

(1.11)

Here, �p(D)(C) is a Lagrangian multiplier that ensures conservation of conditional probability:∑
E∈"(p(D))

%C

(
GE(C)
Gp(D)(C)

)
= 0 .

One can see that the evolution is being driven by the expected instantaneous cost incurred

conditioned on the current state being in the subtree rooted at D.

One should interpret equation (1.11) only when G(C) lies in the relative interior of K) .
Otherwise, the conditional probabilities are ill-defined. One way to rectify this is to prevent

G(C) from hitting the relative boundary of K) at all. It is possible to adaptively modify the cost

functions by a suitably small perturbation so as to guarantee this property and, at the same

time, ensure that the total discrepancy between the modified and true service cost is a small

additive constant.

Instead, we will follow a different approach, by extending the dynamics to an analogous

system of conditional probabilities {@D(C) : D ∈ + \ {r}}:

%C@D(C) =
�D
FD
(@D(C) + �D)

(
�p(D)(C) − 2̂D(C) + D(C)

)
, (1.12)

where @D(C) = GD(C)
Gp(D)(C) whenever Gp(D)(C) > 0, D(C) is a Lagrangian multiplier for the constraint

@D(C) ≥ 0, and 2̂D(C) is the “derived” cost in the subtree rooted at D:

2̂D(C) :=
∑
ℓ∈ℒD

@ℓ |D(C)2ℓ (C)

@ℓ |D(C) :=
∏

E∈�D,ℓ \{D}
@E(C) ,

where �D,ℓ is the unique simple D-ℓ path in).

Stated this way, the mirror descent algorithm can be envisioned as running a “weighted star”

algorithm on the conditional probabilities at every internal node of), with the derived costs at

an internal node D given by the average cost of the current strategy for playing one unit of mass

in the subtree rooted at D.

THEORY OF COMPUTING, Volume 18 (23), 2022, pp. 1–24 7

http://dx.doi.org/10.4086/toc

CHRISTIAN COESTER AND JAMES R. LEE

In the next section, we will implement and analyze a discretization of (1.12) using Bregman

projections. Since our regularizer Φ and convex body K) do not satisfy the assumptions

underlying the existence and uniqueness theorem of [14], we need to construct a solution to

(1.12) and, indeed, taking the discretization parameter in our algorithm to zero, one establishes

a solution of bounded variation; see Section 3.3.

Themajor benefit of the formulations (1.11) and (1.12) is in motivating such an algorithm and

prescribing the derived costs. In Section 3, we describe how these dynamics can be predicted

from the definition (1.7).

2 The MTS algorithm

We will first establish some generic machinery which, at this point, is not specific to MTS yet.

Consider a convex polytopeK0 ⊆ ℝ=
, defineK := K0∩ℝ=

+, and assume thatK is compact. Suppose

additionally that Φ : D → ℝ is differentiable and strictly convex in an open neighborhood

D ⊇ K.
Let us write DΦ for the corresponding Bregman divergence

DΦ(H ‖ G) := Φ(H) −Φ(G) − 〈∇Φ(G), H − G〉 ,

which is non-negative due to convexity of Φ. Then for G, H, I ∈ K, we have:

DΦ(I ‖ H) − DΦ(I ‖ G) = −Φ(H) +Φ(G) − 〈∇Φ(H), I − H〉 + 〈∇Φ(G), I − G〉. (2.1)

For a vector 2 ∈ ℝ=
and G ∈ K, define the projection

Π2
K(G) := argmin {DΦ(H ‖ G) + 〈2, H〉 : H ∈ K} .

Since K is compact and Φ is strictly convex, there is a unique minimizer H∗ ∈ K.
For G ∈ K, recall the definition of the normal cone at G:

NK(G) = {? ∈ ℝ=
: 〈?, H − G〉 ≤ 0 for all H ∈ K} .

Given a representation of K by inequality constraints, K = {G ∈ ℝ=
: �G ≤ 1} for � ∈ ℝ<×=

and

1 ∈ ℝ=
, it holds

NK(G) = {�)H : H ≥ 0 and H)(�G − 1) = 0}.

The KKT conditions yield

∇Φ(H∗) = ∇Φ(G) − 2 − �∗ , (2.2)

where �∗ ∈ NK(H∗). Since NK(H∗) = NK0
(H∗) + Nℝ=

+(H∗), we can can decompose �∗ = � − with

� ∈ NK0
(H∗) and − ∈ Nℝ=

+(H∗). In particular, we have ≥ 0 and 8 > 0 =⇒ H∗
8
= 0 for every

8 = 1, . . . , =.

THEORY OF COMPUTING, Volume 18 (23), 2022, pp. 1–24 8

http://dx.doi.org/10.4086/toc

PURE ENTROPIC REGULARIZATION FOR METRICAL TASK SYSTEMS

Substituting this into equation (2.1) gives

DΦ(I ‖ H∗) − DΦ(I ‖ G) = −Φ(H∗) +Φ(G) + 〈∇Φ(G), H∗ − G〉 + 〈2 − + �, I − H∗〉
≤ −DΦ(H∗ ‖ G) + 〈2 − , I − H∗〉,

where the inequality comes from 〈�, I − H∗〉 ≤ 0 since I ∈ K and � ∈ NK(H∗). We have proved the

following.

Lemma 2.1. For any G, I ∈ K, and 2 ∈ ℝ= , let H∗ = Π2
K(G) and �∗ be as in (2.2). Then for any

 ∈ −Nℝ+= (H∗) such that �∗ + ∈ NK0
(H∗), it holds that

DΦ(I ‖ H∗) − DΦ(I ‖ G) ≤ 〈2 − , I − H∗〉.

2.1 Iterative Bregman projections

We describe now a discretization of the algorithm from the introduction. This discretization

will mimic the continuous dynamics if the entries of each individual cost vector are small. We

can achieve this by splitting each cost vector into several copies of scaled down versions of itself,

as discussed in Section 2.3. In Section 3.3, we will give a formal argument that this indeed yields

a discretization of the continuous dynamics from the introduction.

Fix a tree) and recall the definition of K) from (1.3). Let &) denote the collection of vectors

@ ∈ ℝ+\{r}
+ such that for all D ∈ + \ ℒ, ∑

E∈"(D)
@E = 1.

For @ ∈ &) and D ∈ + \ ℒ, we use @(D) ∈ ℝ"(D)
+ to denote the vector defined by @

(D)
E := @E for

E ∈ "(D), and define the corresponding probability simplex &
(D)
)

:= {@(D) : @ ∈ &)}. We will use

Δ : &) → K) for the map which sends @ ∈ &) to the (unique) G = Δ(@) ∈ K) such that

GE = GD@E ∀D ∈ + \ ℒ , E ∈ "(D).

Note that @ contains more information than G; the map Δ fails to be invertible whenever there is

some D ∈ + \ ℒ with GD = 0.

Fix � ≥ 1. On the open domain D(D) = (−minE∈"(D) �E ,∞)"(D), for �E as given in equa-

tion (1.10), define the strictly convex function Φ(D) : D(D) → ℝ by

Φ(D)(?) :=
1

�

∑
E∈"(D)

FE

�E
(?E + �E) log (?E + �E) .

Denote the corresponding Bregman divergence on &
(D)
)

by

D(D)(? ‖ ?′) = 1

�

∑
E∈"(D)

FE

�E

[
(?E + �E) log

?E + �E
?′E + �E

+ ?′E − ?E
]
.

THEORY OF COMPUTING, Volume 18 (23), 2022, pp. 1–24 9

http://dx.doi.org/10.4086/toc

CHRISTIAN COESTER AND JAMES R. LEE

We now define an algorithm that takes a point @ ∈ &) and a cost vector 2 ∈ ℝℒ+ and outputs

a point ? = A(@, 2) ∈ &) . Fix 〈D1 , D2 , . . . , D#〉 a topological ordering of + \ ℒ such that every

child in) occurs before its parent. We define ? inductively as follows. Let 2̂ℓ := 2ℓ for ℓ ∈ ℒ. For
every 9 = 1, 2, . . . , # :

2̂
(D9)
E := 2̂E ∀E ∈ "(D9) (2.3)

?(D9) := argmin

{
D(D9)

(
? ‖ @(D9)

)
+

〈
?, 2̂(D9)

〉 �� ? ∈ &(D9)
)

}
(2.4)

2̂D9 :=
∑

E∈"(D9)
?
(D9)
E 2̂E (2.5)

Let (D9) be the vector of Lagrange multipliers corresponding to the nonnegativity constraints in

equation (2.4) (recall Lemma 2.1). One should note that in this setting (a probability simplex),

the nonnegativity multipliers are unique and thus well-defined.

We denote = @,2 ∈ ℝ+
+ as the vector given by E := (p(E))E for E ≠ r and r := 0. Recall the

complementary slackness conditions:

E > 0 =⇒ ?E = 0. (2.6)

For E ∈ "(D), calculate (
∇Φ(D)(?)

)
E
=

1

�
FE

�E

(
1 + log(?E + �E)

)
.

Then using equation (2.2), we can write the algorithm as follows:

For 9 = 1, 2, . . . , # :

For E ∈ "(D9):
?
(D9)
E := (@(D9)E + �E) exp

(
�
�E
FE

(
�D9 − (2̂E − E)

))
− �E ,

2̂D9 :=
∑
E∈"(D9) ?

(D9)
E 2̂E .

where �D9 ≥ 0 is the multiplier for the constraint

∑
E∈"(D9) @

(D9)
E ≥ 1. There is no multiplier for

the constraint

∑
E∈"(D9) @

(D9)
E ≤ 1 because this constraint will be satisfied automatically and is

therefore not needed in (2.4): If it were violated, decreasing some ?E with ?E > @
(D9)
E would yield

a strictly better solution to the minimization problem (2.4).

2.2 The global divergence

For I ∈ K) and @ ∈ &) , define the global divergence function

D̃(I ‖ @) :=
1

�

∑
D∉ℒ

∑
E∈"(D)

FE

�E

[
(IE + �EID) log

(
IE
ID
+ �E

@E + �E

)
+ ID@E − IE

]
,

THEORY OF COMPUTING, Volume 18 (23), 2022, pp. 1–24 10

http://dx.doi.org/10.4086/toc

PURE ENTROPIC REGULARIZATION FOR METRICAL TASK SYSTEMS

where we use the convention that 0 log

(
0

0
+ �E

)
= lim�→0 � log

(
0

� + �E
)
= 0.

Note that D̃ is the Bregman divergence associated to the regularizer (1.7) (divided by �)
when

GE
GD

is replaced by @E . One can write

D̃(I ‖ @) =
∑
D∉ℒ

IDD(D)(? ‖ @) ,

where ? ∈ Δ−1(I). In other words, ? ∈ &) is any point satisfying IE = ?EID for all D ∉ ℒ and

E ∈ "(D),
We will use D̃ as a potential function to prove inequality (1.1), and I will denote the

configuration of some offline algorithm. Note that the state of the online algorithm is encoded

by @ ∈ &) , which contains more information than its configuration Δ(@) ∈) .
The next lemma shows that when an offline algorithm moves, the change in potential is

bounded by $(1/�) times the offline movement cost.

Lemma 2.2. It holds that for any @ ∈ &) and I, I′ ∈ K) ,��D̃(I ‖ @) − D̃(I′ ‖ @)
�� ≤ 1

�

(
2 + 4

�

)
‖I − I′‖ℓ1(F) .

Proof. Consider a differentiable map I : [0, 1] → ℝ+
++ such that

∑
E∈"(D) IE(C) ≤ ID(C) for each C

and D ∉ ℒ. It suffices to show that for each C and every fixed @ ∈ &) ,

�
��%CD̃(I(C) ‖ @)�� ≤ (

2 + 4

�

)
‖I′(C)‖ℓ1(F) .

Moreover, it suffices to address the case when there is at most one D ∈ + with I′D(C) ≠ 0.

A direct calculation gives

�%CD̃(I(C) ‖ @) =
FD

�D
I′D(C) log

(
ID(C)/Ip(D)(C) + �D

@D + �D

)
+

∑
E∈"(D)

FE

�E

[
�EI
′
D(C) log

(
IE(C)/ID(C) + �E

@E + �E

)
+ I′D(C)

(
@E −

IE(C)
ID(C)

)]
. (2.7)

Let us now use definitions (1.9) and (1.10) to observe that

1

�E

����log

?E + �E
@E + �E

���� ≤ 1

�E
log

1 + �E
�E

≤ 2.

Using this in equation (2.7) yields

�
��%CD̃(I(C) ‖ @)�� ≤ FD |I′D(C)| ©«2 + 1

�

∑
E∈"(D)

(
2�E +

����@E − IE(C)ID(C)

����)ª®¬ ≤ FD |I′D(C)|
(
2 + 4

�

)
,

where the last inequality uses

∑
E∈"(D) �E ≤

∑
E∈"(D) �E ≤ 1 and

∑
E∈"(D) IE(C) ≤ ID(C). �

THEORY OF COMPUTING, Volume 18 (23), 2022, pp. 1–24 11

http://dx.doi.org/10.4086/toc

CHRISTIAN COESTER AND JAMES R. LEE

Wewill sometimes implicitly restrict vectors G ∈ ℝ+
to the subspace spanned by {4ℓ : ℓ ∈ ℒ}.

In this case, we employ the notation

〈G, H〉ℒ :=
∑
ℓ∈ℒ

Gℓ Hℓ ,

when either vector lies in ℝ+
or ℝℒ .

According to the following lemma, the change in potential due to movement of the online

algorithm is bounded by the difference in service cost between the offline and online algorithm.

Lemma 2.3. For any cost vector 2 ∈ ℝℒ+ , I ∈ K) , and @ ∈ &) , it holds that if ? = A(@, 2), then

D̃(I ‖ ?) − D̃(I ‖ @) ≤ 〈2, I − Δ(?)〉ℒ .

Proof. Fix @ ∈ &) and 2 ∈ ℝℒ+ . Let = @,2 denote the vector of multipliers defined in Section 2.1.

For D ∈ + \ ℒ with ID > 0, define I(D) ∈ &(D)
)

by

I
(D)
E :=

IE

ID
.

Then Lemma 2.1 gives

D(D)
(
I(D) ‖ ?(D)

)
− D(D)

(
I(D) ‖ @(D)

)
≤

〈
2̂(D) − (D) , I(D) − ?(D)

〉
"(D)

,

where we use 〈·, ·〉"(D) for the standard inner product on ℝ"(D)
. Multiplying by ID and summing

yields

D̃(I ‖ ?) − D̃(I ‖ @) ≤
∑
D∉ℒ

ID

〈
2̂(D) − (D) , I(D) − ?(D)

〉
"(D)

=
∑
D∉ℒ

∑
E∈"(D)

(2̂(D)E − (D)E)IE −
∑
D∉ℒ

ID

∑
E∈"(D)

(2̂(D)E − (D)E)?E .

Note that from implication (2.6), the latter expression is∑
D∉ℒ

ID

∑
E∈"(D)

2̂
(D)
E ?E

(2.5)

=
∑
D∉ℒ

ID 2̂D .

Noting that 2̂r =
∑
ℓ∈ℒ Δ(?)ℓ 2ℓ , this gives

D̃(I ‖ ?) − D̃(I ‖ @) ≤
∑
D≠r

(2̂D − D)ID −
∑
D∉ℒ

ID 2̂D ≤ 〈2, I − Δ(?)〉ℒ . �

THEORY OF COMPUTING, Volume 18 (23), 2022, pp. 1–24 12

http://dx.doi.org/10.4086/toc

PURE ENTROPIC REGULARIZATION FOR METRICAL TASK SYSTEMS

2.3 Algorithm and competitive analysis

Let us now outline the proof of inequality (1.2). First, we perform a standard reduction that

allows us to bound only the “positive” movement costs when the algorithm moves from G to H.

Its proof is straightforward.

Lemma 2.4. For G, H ∈ K) it holds that

‖G − H‖ℓ1(F) = 2 ‖(G − H)+‖ℓ1(F) + [#(H) − #(G)],

where #(G) :=
∑
D≠r FDGD for G ∈ K) .

We now state the key technical lemma which controls the positive movement cost by the

service cost. To this end, we employ an auxiliary potential functionΨ : &) → ℝ defined by

ΨD(@) := −Δ(@)D D(D)
(
�(D) ‖ @(D)

)
Ψ(@) :=

∑
D∉ℒ

ΨD(@).

Intuitively,Ψ(@) is a measure of difference between the online configuration @ and the uniform

distribution over leaves (whose conditional probabilities are given by �).
Let us give a brief explanation of the need forΨ. Our addition of “noise” to the multiscale

conditional entropy is to achieve the smoothness property established in Lemma 2.2. But this

has the adverse effect of increasing the movement cost of the algorithm, as one can see from the

�D term in (1.11). This additional movement cannot be easily charged against the service cost in

the regime where the noise term is dominant:
GD(C)
Gp(D)(C) � �D . On the other hand, this additional

movement has the effect of further decreasing
GD(C)
Gp(D)(C) , which drives the conditional probabilities

at p(D) away from the uniform distribution, decreasingΨ. A formal statement appears later in

Lemma 2.11.

For the next two results, take any @ ∈ &) and cost 2 ∈ ℝℒ+ , and denote ? = A(@, 2), G =
Δ(@), H = Δ(?).

Lemma 2.5 (Movement analysis). It holds that

� − 3

��

(G − H)+ℓ1(F) ≤ (2D) + log =)〈2, G〉ℒ + [Ψ(@) −Ψ(?)] .

This lemma will be proved in Section 2.4. Let us first see that it can be used to establish

bounds on the competitive ratio. Define Fmin
:= min{Fℓ : ℓ ∈ ℒ} and

�) :=
Fmin

2(2D) + log =)
� − 3

��
.

THEORY OF COMPUTING, Volume 18 (23), 2022, pp. 1–24 13

http://dx.doi.org/10.4086/toc

CHRISTIAN COESTER AND JAMES R. LEE

Theorem 2.6. For any I ∈ K) :

〈2, H〉ℒ ≤ 〈2, I〉ℒ +
[
D̃(I ‖ @) − D̃(I ‖ ?)

]
(2.8)

�−1 ‖G − H‖ℓ1(F) ≤ [#(H) − #(G)] +
2�
� − 3

(
[Ψ(@) −Ψ(?)] + (2D) + log =)〈2, G〉ℒ

)
(2.9)

Moreover, if ‖2‖∞ ≤ �) , then

�−1 ‖G − H‖ℓ1(F) ≤ [#(H) − #(G)] +
4�
� − 3

(
[Ψ(@) −Ψ(?)] + (2D) + log =)〈2, H〉ℒ

)
. (2.10)

Proof. Inequality (2.8) follows from Lemma 2.3, and inequality (2.9) follows from Lemma 2.5

and Lemma 2.4. To see that inequality (2.10) follows from inequality (2.9) and Lemma 2.5, use

the fact that

〈2, G〉ℒ ≤ 〈2, H〉ℒ +
‖2‖∞
Fmin

(G − H)+ℓ1(F) . �

In light of Theorem 2.6, we can respond to a cost function 2 ∈ ℝℒ+ by splitting it into

" pieces 21 , 22 , . . . , 2" where " = d‖2‖∞/�)e. Now define @8 := A(@8−1 , 2/"), @0 := @ and

Ā(@, 2) := @" .

Theorem 2.7. Fix � ≥ 4. Consider the algorithm that begins in some configuration @0 ∈ &) . If 2C ∈ ℝℒ+
is the cost function that arrives at time C, denote @C := Ā(@C−1 , 2C). Then the sequence 〈Δ(@0),Δ(@1), . . .〉
is an online algorithm that is (1, $(1/�), $(�(D) + log =)))-finely competitive.

We prove this momentarily. The following fact is well-known and, in conjunction with the

preceding theorem, yields the validity of Theorems 1.1 and 1.3.

Lemma 2.8 (See, e.g., [3, Thm. 2.4]). If (ℒ , 3)) is an HST metric, then there is another weighted tree
)′ with leaf set ℒ such that

1. (ℒ , 3)′) is a 7-HST metric.

2. D)′ ≤ log
2
|ℒ|

3. All the leaves of)′ have depth D)′.

4. 3)(ℓ , ℓ ′) ≤ 3)′(ℓ , ℓ ′) ≤ $(3)(ℓ , ℓ ′)) for all ℓ , ℓ ′ ∈ ℒ.

Proof sketch. Replace every weight FE in) with F̂E := 7
dlog

7
FEe

and iteratively contract every

edge (?(D), D) with F̂?(D) = F̂D and D ∉ ℒ. The resulting weighted tree)1 is a 7-HST by

construction.

Now iteratively contract every edge (?(D), D) in)1 for which |ℒ)1

D | > 1

2
|ℒ)1

?(D) |. The resulting
tree)′ has depthD)′ ≤ log

2
|ℒ|. Finally, one can achieve property (3) by increasing the depth of

every root-leaf path toD)′ using vertex weights that decrease by a factor of 7 along the path. �

THEORY OF COMPUTING, Volume 18 (23), 2022, pp. 1–24 14

http://dx.doi.org/10.4086/toc

PURE ENTROPIC REGULARIZATION FOR METRICAL TASK SYSTEMS

Proof of Theorem 2.7. Consider a sequence 〈2C : C ≥ 1〉 of cost functions. By splitting the costs

into smaller pieces, we may assume that ‖2C ‖∞ ≤ �) for all C ≥ 1.

Let {I∗C} denote some offline algorithm with I∗
0
= Δ(@0), and let {GC = Δ(@C)} denote our

online algorithm. Then using D̃(I∗
0
‖ G0) = 0 along with inequality (2.8) and Lemma 2.2 yields,

for any time C1 ≥ 1,

C1∑
C=1

〈2C , GC〉ℒ ≤
C1∑
C=1

〈2C , I∗C〉ℒ − D̃(I∗C1 ‖ @C1) + $(1/�)
C1∑
C=1

‖I∗C − I∗C−1
‖ℓ1(F)

≤
C1∑
C=1

〈2C , I∗C〉ℒ + $(1/�)
C1∑
C=1

‖I∗C − I∗C−1
‖ℓ1(F) ,

where we have used D̃(I ‖ @) ≥ 0 for all I ∈ K) and @ ∈ &) . This verifies inequality (1.1) with

0 = 1, 1 = $(1/�), and � = 0. Moreover, inequality (2.10) gives

1

�

C1∑
C=1

‖GC − GC−1‖ℓ1(F) ≤ [#(GC1) − #(G0)] +
4�
� − 3

[Ψ(@0) −Ψ(@C1)] +
(
2D) + log =

) C1∑
C=1

〈2C , GC〉ℒ ,

verifying inequality (1.2) with 1 ≤ $(�(D) + log =)) and �′ ≤ $(�maxE≠r FE) (see Lemma 2.10

below). �

2.4 Movement analysis

It remains to prove Lemma 2.5. Recall that @ ∈ &) , 2 ∈ ℝℒ+ and ? = A(@, 2), G = Δ(@), H = Δ(?).
The KKT conditions (see equation (2.2)) give: For every E ∈ "(D),

1

�
FE

�E
log

(
?E + �E
@E + �E

)
= �D − 2̂E + E , (2.11)

where �D ≥ 0 is the multiplier corresponding to the constraint

∑
E∈"(D) @E ≥ 1.

Lemma 2.9. It holds that E ≤ 2̂E for all E ∈ + \ {r}.

Proof. Note that 2̂E ≥ 0 by construction. Thus if E = 0, we are done. Otherwise, by

complementary slackness, it must be that ?E = 0, and therefore log(?E+�E@E+�E) ≤ 0. Since �p(E) ≥ 0,

equation (2.11) implies that E ≤ 2̂E . �

Define �E := log

(
?E+�E
@E+�E

)
so that

@E − ?E = (@E + �E)(1 − e
�E). (2.12)

Recall that for E ∈ "(D), we have GE = @EGD and HE = ?EHD , thus

GE − HE = GD(@E − ?E) + ?E(GD − HD) = (GE + �EGD)(1 − 4�E) + ?E(GD − HD).

THEORY OF COMPUTING, Volume 18 (23), 2022, pp. 1–24 15

http://dx.doi.org/10.4086/toc

CHRISTIAN COESTER AND JAMES R. LEE

In particular,

FE (GE − HE)+ ≤ FE(GE + �EGD)(1 − e
�E)+ + FE?E (GD − HD)+

≤ FE(GE + �EGD)(1 − e
�E)+ +

FD

�
?E (GD − HD)+ .

Using

∑
E∈"(D) ?E = 1 and summing over all vertices yields∑

E≠r

FE (GE − HE)+ ≤
∑
E≠r

FE(GE + �EGp(E))(1 − e
�E)+ +

1

�

∑
E≠r

FE (GE − HE)+ ,

hence ∑
E≠r

FE (GE − HE)+ ≤
�

� − 1

∑
E≠r

FE(GE + �EGp(E))(1 − e
�E)+

≤ �
� − 1

∑
E≠r

FE(GE + �EGp(E)) (�E)−

≤ ��
� − 1

©«
∑
E≠r

�EGE 2̂E +
∑
D∉ℒ

GD

∑
E∈"(D)

�E(2̂E − E)ª®¬ , (2.13)

where the last line uses Lemma 2.9 and equation (2.11), to bound FE(�E)− ≤ ��E (2̂E − E).
Note that ∑

E≠r

�EGE 2̂E ≤
∑
ℓ∈ℒ

2ℓ Gℓ

∑
E∈�r ,ℓ \{r}

�E ≤ (D) + log =) 〈2, G〉 , (2.14)

since for any ℓ ∈ ℒ, it holds that∑
E∈�r ,ℓ \{r}

�E = D)(ℓ) +
∑

E∈�r ,ℓ \{r}
log

|ℒp(E) |
|ℒE |

= D)(ℓ) + log =,

where D)(ℓ) is the combinatorial depth of ℓ .

The second sum in (2.13) can be interpreted as the service cost of hybrid configurations of @

and �: While

∑
E∈"(D) GE 2̂E is the service cost of G in ℒD , the term GD

∑
E∈"(D) �E 2̂E is the service

cost in ℒD of the modification of G whose conditional probabilities at the children of D are given

by �(D) rather than @(D). To bound this hybrid service cost, we will employ the auxiliary potential

Ψ.

2.4.1 The hybrid cost

We require the following elementary estimate.

Lemma 2.10. For D ∉ ℒ it holds that

max

{
D(D)(A ‖ ?) : A, ? ∈ &(D)

)

}
≤ 2

�
FD

�
.

THEORY OF COMPUTING, Volume 18 (23), 2022, pp. 1–24 16

http://dx.doi.org/10.4086/toc

PURE ENTROPIC REGULARIZATION FOR METRICAL TASK SYSTEMS

Proof. Define)E : (−�E ,∞) → ℝ by

)E(?) :=
1

�E
(?E + �E) log(?E + �E),

and let

D)E (@E ‖ ?E) =
1

�E

[
(@E + �E) log

@E + �E
?E + �E

+ (?E − @E)
]

denote the corresponding Bregman divergence. Then for @E , ?E ≥ 0, it holds that D)E (@E ‖ ?E) ≥ 0

since)E is convex on ℝ+. Employing the �-HST property of), this implies that

D(D)(A ‖ ?) = 1

�

∑
E∈"(D)

FED)E (AE ‖ ?E) ≤
FD

��

∑
E∈"(D)

D)E (AE ‖ ?E).

Define � : &
(D)
)
×&(D)

)
→ ℝ+ by �(A, ?) :=

∑
E∈"(D) D)E (AE ‖ ?E). The map A ↦→ �(A, ?) is convex

in general (for any Bregman divergence). The map ? ↦→ �(A, ?) is convex as well, as this holds

for each map ?E ↦→ D)E (@E ‖ ?E) since − log(G) is convex onℝ++. Since the maximum of a convex

function on the a polytope is achieved at an extreme point, we have

max

{
�(A, ?) : A, ? ∈ &(D)

)

}
≤ max

E,E′∈"(D)
E≠E′

[
1

�E

(
(1 + �E) log

1 + �E
�E
− 1

)
+ 1

�E′

(
�E′ log

�E′

1 + �E′
+ 1

)]
≤ 2. �

The next lemma is crucial: It relates the service cost (with respect to the reduced cost 2̂ −)
of the hybrid configurations to the service cost of the actual configuration and the movement

cost.

Lemma 2.11. For any D ∉ ℒ, it holds that

ΨD(?) −ΨD(@) ≤
2

�
FD

�
(GD − HD)+ +

∑
E∈"(D)

(2̂E − E) [GE − �EGD] . (2.15)

Proof. Write

ΨD(?) −ΨD(@) = GDD(D)
(
�(D) ‖ @(D)

)
− HDD(D)

(
�(D) ‖ ?(D)

)
= (GD − HD)D(D)(�(D) ‖ ?(D)) + GD

[
D(D)(�(D) ‖ @(D)) − D(D)(�(D) ‖ ?(D))

]
.

Using Lemma 2.10, the first term is bounded by
2

�
FD
� (GD − HD)+.

THEORY OF COMPUTING, Volume 18 (23), 2022, pp. 1–24 17

http://dx.doi.org/10.4086/toc

CHRISTIAN COESTER AND JAMES R. LEE

Let us now bound the second term. Using 1 + C ≤ e
C
, we have

�GD
[
D(D)(�(D) ‖ @(D)) − D(D)(�(D) ‖ ?(D))

]
= GD

∑
E∈"(D)

FE

�E

[
(�E + �E) log

?E + �E
@E + �E

+ @E − ?E
]

(2.12)

= GD

∑
E∈"(D)

FE

�E
[(�E + �E)�E + (@E + �E)(1 − e

�E)]

≤ GD

∑
E∈"(D)

FE

�E
�E(�E − @E)

=
∑
E∈"(D)

FE

�E
�E [�EGD − GE] .

To finish the proof, observe that from equation (2.11),∑
E∈"(D)

FE

�E
�E [�EGD − GE] = �

∑
E∈"(D)

(�D − 2̂E + E) [�EGD − GE] = �
∑
E∈"(D)

(E − 2̂E) [�EGD − GE] ,

where the last equality uses

∑
E∈"(D) GE = GD and

∑
E∈"(D) �E = 1 (from (1.8)). �

Using the lemma gives∑
D∉ℒ

GD

∑
E∈"(D)

�E(2̂E − E)
(2.15)

≤ [Ψ(@) −Ψ(?)] + 2

��

(Δ(@) − Δ(?))+ℓ1(F) +∑
E≠r

2̂EGE

≤ [Ψ(@) −Ψ(?)] + 2

��

(Δ(@) − Δ(?))+ℓ1(F) +D) 〈2, G〉ℒ .

Combining this inequality with inequality (2.13) and inequality (2.14) gives

�−1

(G − H)+ℓ1(F) ≤ �
� − 1

[(
2D) + log =

)
〈2, G〉ℒ + (Ψ(@) −Ψ(?)) +

2

��

(G − H)+ℓ1(F)] ,
(2.16)

completing the verification of Lemma 2.5.

3 Derivation of the dynamics and derived costs

For the sake of motivating the dynamics (1.11), we review the continuous-time mirror descent

framework of [14]. Suppose that K ⊆ ℝ#
is a convex set. We recall again the definition of the

normal cone to K at G ∈ K, which is given by

#K(G) := (K − G)◦ =
{
? ∈ ℝ#

: 〈?, H − G〉 ≤ 0 for all H ∈ K
}
.

Suppose additionally that Φ : D → ℝ is C2
and strictly convex on an open neighborhood

D ⊇ K so that the Hessian ∇2Φ(G) is well-defined and positive definite onD. Given a control

THEORY OF COMPUTING, Volume 18 (23), 2022, pp. 1–24 18

http://dx.doi.org/10.4086/toc

PURE ENTROPIC REGULARIZATION FOR METRICAL TASK SYSTEMS

function � : [0,∞) × K→ ℝ#
and an initial point G0 ∈ K, we will be concerned with absolutely

continuous solutions G : [0,∞) → K to the differential inclusion

G(0) = G0 ,

∇2Φ(G(C))G′(C) ∈ �(C , G(C)) − #K(G(C)) .

In other words, a trajectory that satisfies G(0) = G0 and for almost every C ≥ 0:

G′(C) = ∇2Φ(G(C))−1 (�(C , G(C)) − �(C)) , (3.1)

with �(C) ∈ #K(G(C)).
Under suitably strong conditions on Φ and �, there is a unique absolutely continuous

solution to equation (3.1) [14]. In our setup, these conditions are actually not satisfied unless we

prevent the path G from hitting the relative boundary of K. Nevertheless, the formal calculation

is elucidating and motivates the algorithm of Section 2. For simplicity, we assume � := 1 in this

section.

3.1 Hessian computation

Let us take Φ as in (1.7) and calculate ∇2Φ(G) for G ∈ ℝ+
++. Fix D ≠ r. Then we have

%DΦ(G) =
FD

�D

(
log

(
GD

Gp(D)
+ �D

)
+ 1

)
+

∑
E∈"(D)

FE

�E

(
�E log

(
GE

GD
+ �E

)
− GE
GD

)
. (3.2)

Moreover, %DEΦ(G) = 0 unless D = E, D ∈ "(E), or E ∈ "(D), and in this case,

%DDΦ(G) =
FD

�D(GD + �DGp(D))
+

∑
E∈"(D)

(
GE

GD

)
2

FE

�E(GE + �EGD)

%D,p(D)Φ(G) = %p(D),DΦ(G) = −
GD

Gp(D)

FD

�D(GD + �DGp(D))
.

3.2 Explicit dynamics

We are now in a position to calculate the formal dynamics. Let us define the control by

�(·, C) := −2(C). We claim that for D ≠ r,

%C

(
GD(C)
Gp(D)(C)

)
=

�D
FD

(
GD(C)
Gp(D)(C)

+ �D
) (

�p(D)(C) −
∑
ℓ∈ℒD

Gℓ (C)
GD(C)

2ℓ

)
, (3.3)

where �D(C) ≥ 0 denotes the Lagrangemultiplier corresponding to the constraint GD =
∑
E∈"(D) GE .

To verify equation (3.3), let us define, for D ≠ r,

ℰ(D) :=
FD

�D

Gp(D)(C)
GD(C) + �DGp(D)(C)

%C

(
GD(C)
Gp(D)(C)

)
.

THEORY OF COMPUTING, Volume 18 (23), 2022, pp. 1–24 19

http://dx.doi.org/10.4086/toc

CHRISTIAN COESTER AND JAMES R. LEE

Then equation (3.3) is equivalent to the assertion that

ℰ(D) = �p(D)(C) −
∑
ℓ∈ℒD

Gℓ (C)
GD(C)

2ℓ (C). (3.4)

Recalling equation (3.1), the equality

(
∇2Φ(G(C))G′(C)

)
D
= (�(C , G(C)) − �(C))D is equivalent to

ℰ(ℓ) = �p(ℓ)(C) − 2ℓ (C), ℓ ∈ ℒ , (3.5)

ℰ(D) −
∑
E∈"(D)

GE(C)
GD(C)

ℰ(E) = �p(D)(C) − �D(C) , D ∈ + \ (ℒ ∪ {r}). (3.6)

Clearly equation (3.5) already confirms equation (3.4) for ℓ ∈ ℒ.
Let us conclude by verifying equation (3.4) for all D ∉ r by (reverse) induction on the depth.

Employing equation (3.6) along with the validity of equation (3.4) for {ℰ(E) : E ∈ "(D)} yields

ℰ(D) = �p(D)(C) − �D(C) +
∑
E∈"(D)

GE(C)
GD(C)

(
�D(C) −

∑
ℓ∈ℒD

Gℓ (C)
GD(C)

2ℓ (C)
)

= �p(D)(C) −
∑
ℓ∈ℒD

Gℓ (C)
GD(C)

2ℓ (C),

where we used the fact that GD =
∑
E∈"(D) GE for G ∈ K) .

3.3 Relationship between discrete and continuous dynamics

Recall the setup from Section 1.3.3. We consider a system of variables {@D(C) : D ∈ + \ {r}}
satisfying the differential equations

%C@D(C) =
�D
FD
(@D(C) + �D)

(
�p(D)(C) − 2̂D(C) + D(C)

)
, (3.7)

where D(C) is a Lagrangian multiplier for the constraint @D(C) ≥ 0, and 2̂D(C) is the “derived”
cost in the subtree rooted at D:

2̂D(C) :=
∑
ℓ∈ℒD

@ℓ |D(C)2ℓ (C)

@ℓ |D(C) :=
∏

E∈�D,ℓ \{D}
@E(C) ,

where �D,ℓ is the unique simple D-ℓ path in). Now the values @ℓ |r give a probability distribution

on the leaves.

Let us argue that when the discretization parameter of the algorithm presented in Section 2

goes to zero, one arrives at a solution to equation (3.7). Recall that in Section 2.3, we split

THEORY OF COMPUTING, Volume 18 (23), 2022, pp. 1–24 20

http://dx.doi.org/10.4086/toc

PURE ENTROPIC REGULARIZATION FOR METRICAL TASK SYSTEMS

each cost function 2 ∈ ℝℒ+ into " pieces "−12 and computed a sequence of configurations

@0 , . . . , @" ∈ &) . Define the piecewise-linear function @(") : [0, 1] → &) by

@(")

(
9 + �
"

)
:= (1 − �)@ 9 + �@ 9+1 , � ∈ [0, 1], 9 ∈ {0, . . . , " − 1}.

Recalling Section 2.1, we have

@
(D)
9

:= argmin

{
D(D)

(
? ‖ @(D)

9−1

)
+

〈
?, "−1 2̂

(D)
9

〉 ��� ? ∈ &(D)) }
, (3.8)

where

2̂
(D)
9
=

∑
ℓ∈ℒE
(@ 9)ℓ |D2ℓ .

Thus for E ∈ "(D) and 9 ≥ 1,(
@
(D)
9

)
E
=

[(
@
(D)
9−1

)
E
+ �E

]
exp

(
�E
FE

(
�D − ("−1(2̂(D)

9
)E − E)

))
− �E .

One can now verify that there is a constant ! = !(2,)) such that�� (@ 9)E − (
@ 9−1

)
E

�� ≤ !

"
, 9 ∈ {1, . . . , "}, E ∈ + \ {r}.

In particular, we see that @′(") ∈ !
∞([0, 1],ℝ+\{r}) for every " ≥ 1 and, moreover,

sup

"≥1

@′(")!∞ < ∞. (3.9)

Therefore by Arzelà–Ascoli (see, e.g., [2, Thm. 0.3.1]), there is a subsequence {":} such that

@(":) converges uniformly to a function @ : [0, 1] → &) .

Since the unit ball of !∞([0, 1],ℝ+\{r}) is weakly compact (by the sequential Banach–Alaoglu

Theorem; see, e.g., [2, Thm. 0.3.3]), we can pass to a further subsequence {"′
:
} along which @′("′

:
)

convergesweakly to some ℎ ∈ !∞([0, 1],ℝ+\{r}). Moreover, since @(")(1)−@(")(0) =
∫ 1

0
@′(")(C) 3C

for all 0 ≤ 0 < 1 ≤ 1, it follows that @(1) − @(0) =
∫ 1

0
ℎ(C) 3C as well, and therefore for almost all

C ∈ [0, 1], we have @′(C) = ℎ(C).
If we similarly linearly interpolate the cost function to 2̂(") : [0, 1] → ℝ

+\{r}
+ , then 2̂(":) → 2̂

along this sequence as well, and

2̂(D)(C) =
∑
ℓ∈ℒE

@ℓ |D(C)2ℓ .

Now the KKT conditions for optimality in (3.8) give

∇Φ(D)
(
@
(D)
9

)
− ∇Φ(D)

(
@
(D)
9−1

)
+"−1 2̂

(D)
9
∈ −N

&
(D)
)

(
@
(D)
9

)
,

THEORY OF COMPUTING, Volume 18 (23), 2022, pp. 1–24 21

http://dx.doi.org/10.4086/toc

CHRISTIAN COESTER AND JAMES R. LEE

or equivalently,

∇Φ(D)
(
@
(D)
9

)
− ∇Φ(D)

(
@
(D)
9−1

)
"−1

∈ −2̂(D)
9
− N

&
(D)
)

(
@
(D)
9

)
.

By standard results in differential inclusion theory (e. g., the Convergence Theorem [2, Thm.

1.4.1]), we conclude that @ : [0, 1] → &) solves the differential inclusion

∇2Φ(D)
(
@(D)(C)

)
%C@
(D)(C) ∈ −2̂(D)(C) − N

&
(D)
)

(@(D)(C)).

Calculating the Hessian ∇2Φ(D) reveals that @(C) is a solution to equation (3.7).

References

[1] Jacob Abernethy, Peter Bartlett, Niv Buchbinder, and Isabelle Stanton: A regularization

approach to metrical task systems. In Proc. 21st Internat. Conf. Algorithmic Learning Theory
(ALT’10), pp. 270–284. Springer, 2010. [doi:10.1007/978-3-642-16108-7_23] 5

[2] Jean-Pierre Aubin and Arrigo Cellina: Differential Inclusions: Set-Valued Maps and Viability
Theory. Springer, 1984. [doi:10.1007/978-3-642-69512-4] 21, 22

[3] Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph Naor: A polylogarithmic-

competitive algorithm for the :-server problem. J. ACM, 62(5):40:1–49, 2015. Preliminary

version in FOCS’11. [doi:10.1145/2783434, arXiv:1110.1580] 14

[4] Nikhil Bansal, Niv Buchbinder, and Joseph Naor: Metrical task systems and the :-server

problem on HSTs. In Proc. 37th Internat. Colloq. on Automata, Languages, and Programming
(ICALP’10), pp. 287–298. Springer, 2010. [doi:10.1007/978-3-642-14165-2_25] 3

[5] Nikhil Bansal, Niv Buchbinder, and Joseph Naor: A primal-dual randomized algorithm

for weighted paging. J. ACM, 59(4):19:1–24, 2012. Preliminary version in FOCS’07.

[doi:10.1145/2339123.2339126] 2

[6] Yair Bartal: Probabilistic approximations of metric spaces and its algorithmic applications.

In Proc. 37th FOCS, pp. 184–193. IEEE Comp. Soc., 1996. [doi:10.1109/SFCS.1996.548477] 2,

3

[7] Yair Bartal, Avrim Blum, Carl Burch, and Andrew Tomkins: A polylog(n)-competitive

algorithm for metrical task systems. In Proc. 29th STOC, pp. 711–719. ACM Press, 1997.

[doi:10.1145/258533.258667] 2

[8] Yair Bartal, Béla Bollobás, and Manor Mendel: Ramsey-type theorems for metric

spaces with applications to online problems. J. Comput. System Sci., 72(5):890–921, 2006.
[doi:10.1016/j.jcss.2005.05.008, arXiv:cs/0406028] 2

THEORY OF COMPUTING, Volume 18 (23), 2022, pp. 1–24 22

http://dx.doi.org/10.1007/978-3-642-16108-7_23
http://dx.doi.org/10.1007/978-3-642-69512-4
https://doi.org/10.1109/FOCS.2011.63
http://dx.doi.org/10.1145/2783434
http://arxiv.org/abs/1110.1580
http://dx.doi.org/10.1007/978-3-642-14165-2_25
https://doi.org/10.1109/FOCS.2007.43
http://dx.doi.org/10.1145/2339123.2339126
http://dx.doi.org/10.1109/SFCS.1996.548477
http://dx.doi.org/10.1145/258533.258667
http://dx.doi.org/10.1016/j.jcss.2005.05.008
http://arxiv.org/abs/cs/0406028
http://dx.doi.org/10.4086/toc

PURE ENTROPIC REGULARIZATION FOR METRICAL TASK SYSTEMS

[9] Yair Bartal, Nathan Linial, Manor Mendel, and Assaf Naor: On metric Ramsey-

type phenomena. Ann. Math., 162(2):643–709, 2005. Preliminary version in STOC’03.

[doi:10.4007/annals.2005.162.643, arXiv:math/0406353] 2

[10] Avrim Blum, Howard Karloff, Yuval Rabani, and Michael Saks: A decomposition

theorem for task systems and bounds for randomized server problems. SIAM J. Comput.,
30(5):1624–1661, 2000. [doi:10.1137/S0097539799351882] 2

[11] Allan Borodin, Nathan Linial, and Michael E. Saks: An optimal on-line algorithm for

metrical task system. J. ACM, 39(4):745–763, 1992. [doi:10.1145/146585.146588] 2

[12] Sébastien Bubeck and Nicolò Cesa-Bianchi: Regret analysis of stochastic and non-

stochastic multi-armed bandit problems. Found. Trends Mach. Learning, 5(1):1–122, 2012.
[doi:10.1561/2200000024, arXiv:1204.5721] 2, 6

[13] Sébastien Bubeck, Michael B. Cohen, James R. Lee, and Yin Tat Lee: Metrical task systems

on trees via mirror descent and unfair gluing. SIAM J. Comput., 50(3):909–923, 2021.
Preliminary version in SODA’19. [doi:10.1137/19M1237879, arXiv:1807.04404] 2, 3, 4, 5, 6

[14] Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, James R. Lee, and Aleksander Madry:

:-server via multiscale entropic regularization. In Proc. 50th STOC, pp. 3–16. ACM Press,

2018. [doi:10.1145/3188745.3188798, arXiv:1711.01085] 5, 8, 18, 19

[15] Niv Buchbinder, Shahar Chen, and Joseph (Seffi) Naor: Competitive analysis via regular-

ization. In Proc. 25th Ann. ACM–SIAM Symp. on Discrete Algorithms (SODA’14), pp. 436–444.
SIAM, 2014. [doi:10.1137/1.9781611973402.32] 5

[16] Niv Buchbinder and Joseph Naor: The design of competitive online algorithms via a primal-

dual approach. Found. Trends Theor. Comp. Sci., 3(2–3):93–263, 2009. [doi:10.1561/0400000024]
6

[17] Christian Coester and James R. Lee: Pure entropic regularization for metrical task systems.

In Proc. 32nd Ann. Conf. on Learning Theory (COLT’19), pp. 835–848. MLR Press, 2019. PMLR.

1

[18] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar: A tight bound on approximating

arbitrary metrics by tree metrics. J. Comput. System Sci., 69(3):485–497, 2004. Preliminary

version in STOC’03. [doi:10.1016/j.jcss.2004.04.011] 2, 3, 4

[19] Amos Fiat and Manor Mendel: Better algorithms for unfair metrical task systems and

applications. SIAM J. Comput., 32(6):1403–1422, 2003. Preliminary version in STOC’00.

[doi:10.1137/S0097539700376159, arXiv:cs/0406034] 2

[20] Steve Seiden: Unfair problems and randomized algorithms for metrical task systems.

Inform. Comput., 148(2):219–240, 1999. [doi:10.1006/inco.1998.2744] 2

THEORY OF COMPUTING, Volume 18 (23), 2022, pp. 1–24 23

https://doi.org/10.1145/780542.780610
http://dx.doi.org/10.4007/annals.2005.162.643
http://arxiv.org/abs/math/0406353
http://dx.doi.org/10.1137/S0097539799351882
http://dx.doi.org/10.1145/146585.146588
http://dx.doi.org/10.1561/2200000024
http://arxiv.org/abs/1204.5721
https://doi.org/10.1137/1.9781611975482.6
http://dx.doi.org/10.1137/19M1237879
http://arxiv.org/abs/1807.04404
http://dx.doi.org/10.1145/3188745.3188798
http://arxiv.org/abs/1711.01085
http://dx.doi.org/10.1137/1.9781611973402.32
http://dx.doi.org/10.1561/0400000024
http://proceedings.mlr.press/v99/coester19a.html
https://doi.org/10.1145/780542.780608
http://dx.doi.org/10.1016/j.jcss.2004.04.011
https://doi.org/10.1145/335305.335408
http://dx.doi.org/10.1137/S0097539700376159
http://arxiv.org/abs/cs/0406034
http://dx.doi.org/10.1006/inco.1998.2744
http://dx.doi.org/10.4086/toc

CHRISTIAN COESTER AND JAMES R. LEE

AUTHORS

Christian Coester

Associate professor

Department of Computer Science

University of Oxford

Oxford, United Kingdom

christian coester cs ox ac uk

https://www.cs.ox.ac.uk/people/christian.coester/

James R. Lee

Professor

Paul G. Allen Center for Computer Science & Engineering

University of Washington

Seattle, Washington, USA

jrl cs washington edu

https://homes.cs.washington.edu/~jrl/

ABOUT THE AUTHORS

Christian Coester is Associate Professor in the Department of Computer Science at

the University of Oxford and Tutorial Fellow at St Anne’s College. He received

his Ph.D. from Oxford in 2020, under the supervision of Elias Koutsoupias. After

stints as a postdoctoral researcher at CWI in Amsterdam and Tel Aviv University

and as a lecturer at the University of Sheffield, he returned to Oxford in 2022.

His research focuses on the design and analysis of algorithms, especially online

algorithms and learning-augmented algorithms. Outside of his research, he

enjoys sports, chess and playing the piano.

James R. Lee is a Professor of Computer Science & Engineering at the University of

Washington. He received his Ph.D. from the University of California, Berkeley

in 2005, under the supervision of Christos Papadimitriou, followed by a postdoc

at the Institute for Advanced Study in Princeton. His research interests are

varied and eclectic, ranging from spectral graph algorithms to functional analysis,

and from convex optimization to statistical physics. He challenged a class of

undergrads to compete against the MTS algorithm in this paper. They fought

(and coded) valiantly. They PyTorched and TensorFlowed. But in the end, the

Theory won.

THEORY OF COMPUTING, Volume 18 (23), 2022, pp. 1–24 24

https://www.cs.ox.ac.uk/people/christian.coester/
https://homes.cs.washington.edu/~jrl/
https://www.cs.ox.ac.uk/
https://www.ox.ac.uk/
https://www.st-annes.ox.ac.uk/
http://www.cs.ox.ac.uk/people/elias.koutsoupias/Personal/
https://www.cwi.nl/
https://english.tau.ac.il/
https://www.sheffield.ac.uk/
http://www.berkeley.edu/
https://www.engineering.columbia.edu/faculty/christos-papadimitriou
http://ias.edu/
http://dx.doi.org/10.4086/toc

	Introduction
	Refined guarantees
	The fractional model on trees
	Mirror descent, metric filtrations, and regularization
	Metric filtrations
	Multiscale conditional entropy
	The dynamics

	The MTS algorithm
	Iterative Bregman projections
	The global divergence
	Algorithm and competitive analysis
	Movement analysis
	The hybrid cost

	Derivation of the dynamics and derived costs
	Hessian computation
	Explicit dynamics
	Relationship between discrete and continuous dynamics

	References

