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Abstract. We prove two new results about the inability of low-degree polynomials to
uniformly approximate constant-depth circuits, even to slightly-better-than-trivial error. First,
we prove a tight Q(nl/ 2) lower bound on the threshold degree of the SURJECTIVITY
function on n variables. This matches the best known threshold degree bound for any AC?
function, previously exhibited by a much more complicated circuit of larger depth (Sherstov,
FOCS’15). Our result also extends to a 29") 1ower bound on the sign-rank of an AC
function, improving on the previous best bound of 29(n*) (Bun and Thaler, ICALP’16).
Second, for any & > 0, we exhibit a function f: {—1,1}" — {—1,1} that is computed
by a circuit of depth O(1/8) and is hard to approximate by polynomials in the following
sense: f cannot be uniformly approximated to error € = 1 — 2*9(”176), even by polynomials
of degree n'=%. In our FOCS’17 paper we proved a similar lower bound, but which held
only for error € = 1/3.
Our result implies 29(""*) Jower bounds on the complexity of AC? under a variety of
measures, including discrepancy, margin complexity, and threshold weight, that are central
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to communication complexity and learning theory. This nearly matches the trivial upper
bound of 29 that holds for every function. The previous best lower bound on AC? for
these measures was 22(1"%) (Sherstov, FOCS’15). Additional applications in learning theory,
communication complexity, and cryptography are described.

1 Introduction

The threshold degree of a Boolean function f: {—1,1}" — {—1,1}, denoted deg, (f), is the least degree
of a real polynomial p that sign-represents f, i.e., p(x)- f(x) > 0 for all x € {—1,1}". A closely related
notion is the €-approximate degree of f, denoted (Ege (f), which is the least degree of a real polynomial
p such that [p(x) — f(x)| < e forall x € {—1,1}".

The parameter setting € = 1 is a degenerate case: (ggl( f) = 0 because the constant 0 function
approximates any Boolean f to error € = 1. However, as soon as € is strictly less than 1, e-approximate

degree is a highly non-trivial notion with a rich mathematical theory. In particular, it is easily seen that
deg (f) = lim deg, (f).
e/

In other words, threshold degree is equivalent to the notion of e-approximate degree when &€ is permitted
to be arbitrarily close to (but strictly less than) 1.!
In this paper, we are concerned with proving lower bounds on the €-approximate degree when either:

e ¢ is arbitrarily close to 1, or

e ¢ is exponentially closeto 1 (i.e.,e=1— 2" for some constant § > 0).

The former parameter regime captures threshold degree, while we refer to the latter as large-error
approximate degree. While the approximate and threshold degree of a function f capture simple
statements about its approximability by polynomials, these quantities relate intimately to the complexity
of computing f in concrete computational models. Specifically, the query complexity models UPP and
PP%, and the communication models UPP*, PP, are all defined (see Section 2) as natural analogs of the
Turing machine class PP, which in turn captures probabilistic computation with arbitrarily small advantage
over random guessing. Briefly, both UPP® and PP capture the minimum number of queries required to
evaluate a Boolean function with probability at least 1,/2 on every input; UPP“, PP® do the same for two-
party communication problems. It is known that the threshold degree of f is equivalent to its complexity
UPPdt( f), while the logarithm of a fundamental matrix-analytic analog of threshold degree known as sign-
rank characterizes UPP°. Similarly, large-error approximate degree characterizes the query complexity
measure PPY, in the following sense: for any d > 0, deg; ,-4(f) > Q(d) <= PPY(f) > Q(d). As
described in Section 2, PP is also closely related to the notion of threshold weight. Section 2 elaborates
on these models and their many applications in learning theory, circuit complexity, and cryptography.

11t is known that for any d > 0, there are functions of threshold degree d that cannot be approximated by degree d polynomials
to error better than 1 — 2~2(1") [37], and this bound is tight [11]. Hence, threshold degree is also equivalent to the notion of
g-approximate degree for some value of € that is doubly-exponentially close to 1.
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Our results in a nutshell. We prove two results about the threshold degree and large-error approximate

degree of functions in AC?.2

First, we prove a tight Q(nl/ 2) lower bound on the threshold degree (i.e., UPP® complexity) of a
natural function called SURJECTIVITY, which is computed by a depth-three circuit with logarithmic
bottom fan-in. This matches the previous best threshold degree lower bound for any AC® function, due to
Sherstov [44]. Our analysis is much simpler than Sherstov’s, which takes up the bulk of a (70+)-page
manuscript [44]. An additional advantage of our analysis is that our lower bound on the threshold
degree of SURJECTIVITY “lifts” to give a lower bound for the communication analog UPP*® as well. In
particular, we obtain an Q(n'/?) UPP lower bound for a related AC? function; this improves over the
previous best UPP® lower bound for ACY, of Q(n?/?) [15].

Second, we give nearly optimal bounds on the large-error approximate degree (and hence, PP%
complexity) of AC®. For any constant § > 0, we show that there is an AC” function with e-approximate
degree Q(n'~9), where e = 1 — 2-20""") This result lifts to an analogous PP lower bound.

To summarize our results succinctly:

e We prove an Q(n'/?) lower bound on the UPP complexity of SURJECTIVITY in the query setting,
and of a related AC? function in the communication setting.

e We prove an Q(n'~9) lower bound on the PP complexity of some AC? circuit of depth O(1/8), in
both the query and communication settings.

Table 1 compares our new lower bounds for AC? to the long line of prior work with similar goals.

Context and prior work. The study of both large-error approximate degree and threshold degree has
led to many breakthrough results in theoretical computer science, especially in the algorithmic and
complexity-theoretic study of constant-depth circuits. For example, threshold degree upper bounds are
at the core of many of the fastest known PAC learning algorithms. This includes the notorious case of
polynomial-size CNF formulas on n variables, for which the fastest known algorithm [27] runs in time
exp(O(n'/3)) owing to an O(n'/3) upper bound on the threshold degree of any such formula. This upper
bound is tight, matching a classic Q(nl/ 3) lower bound of Minsky and Papert [33] for the following
read-once CNF: AND, 15 0 OR, /5 (here, we use subscripts to clarify the number of inputs on which a
function is defined).

In complexity theory, breakthrough results of Sherstov [39,40] and Buhrman et al. [11] used lower
bounds on large-error approximate degree to show that there are AC? functions with polynomial PP
complexity. One notable implication of these results is that Allender’s [3] classic simulation of AC?
functions by depth-three majority circuits is optimal. (This resolved an open problem of Krause and
Pudldk [30].) A subsequent, related breakthrough of Razborov and Sherstov [38] used Minsky and
Papert’s lower bound on the threshold degree of AND, /s 0 OR /3 to prove the first polynomial UPP
lower bound for a function in AC?, answering an old open question of Babai et al. [5].

These breakthrough lower bounds raised the intriguing possibility that ACY functions could be
maximally hard for the UPP* and PP*° communication models, as well as for related complexity
measures. Nevertheless, the quantitative parameters achieved in these papers are far from actually

2ACY is the non-uniform class of sequences of functions computed by polynomial-size Boolean circuits of constant depth.
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showing that this is the case. Indeed, the following basic questions about the complexity of AC? remain
open.

Open Problem 1. Is there an AC function F: {—1,1}"" — {—1,1} with UPP*® complexity Q(n)?
Open Problem 2. Is there an AC? function F: {—1,1}"" — {—1,1} with PP*® complexity Q(n)?

An affirmative answer to either question would be tight: Every function F: {—1,1}" x {—1,1}" —
{—=1,1} has UPP*® and PP*° complexity at most n. Obtaining an affirmative answer to Open Problem 1
is harder than for Open Problem 2, since UPP°(f) < PP(f) for all f.

Guided by these open problems, a sequence of papers has established quantitatively stronger and
more general lower bounds for AC? functions [13-16, 18,43,44]. In addition to making partial progress
toward resolving these questions, the techniques developed in this body of work have found fruitful
applications in new domains. For example, Bouland et al. [9] built on techniques from some of these
papers [13—15,43] to resolve several old open questions about the relativized power of statistical zero
knowledge proofs and their variants. As another example, our recent papers [12, 18] built on the same
line of work to resolve or nearly resolve a number of longstanding open questions in quantum query
complexity. Finally, large-error and threshold degree lower bounds on AC? functions have recently
proved instrumental in the development of cryptographic secret-sharing schemes with reconstruction
procedures in AC? [7,8, 19]. We thus believe that the new techniques developed in this article will find
further applications, perhaps in unexpected areas.

Prior to our work, the best known result toward a resolution of Open Problem 1 was an Q(n%/) lower
bound on UPP*® complexity of an ACY function [15], while the best known result toward Open Problem
2 was an Q(n'/?) bound on the PP*® complexity of a very complicated AC circuit [44].

1.1 Our results in detail
1.1.1 Resolving the threshold degree of SURJECTIVITY

Surjectivity and its history. Let R be a power of 2 and n = NlogR. The function SURJECTIVITYg y
(SURJg n for short) is defined as follows. Given an input in {—1,1}", SURJg y interprets the input as
a list of N numbers (s1,...,sy) from arange [R] := {1,...,R}, and evaluates to —1 if and only if every
element of the range [R] appears at least once in the list.> SU RJgn is computed by an ACY circuit of
depth three and logarithmic bottom fan-in, since it is equivalent to the ANDy (over all range items r € [R])
of the ORy (over all inputs i € [N]) of “Is input s; equal to r?”, where the quoted question is computed by
a conjunction of width log R over the input bits.

SURJg n has been studied extensively in the contexts of quantum query complexity and approximate
degree. Beame and Machmouchi [6] showed that computing SURJg y for R = N /2 + 1 requires Q(n)
quantum queries, making it the only known AC? function with linear quantum query complexity. Mean-
while, the (1/3)-approximate degree of SURJg v was recently shown to be ®(R'/*.N'/2). The lower
bound is from our prior work [12], while the upper bound was shown by Sherstov [45], with a different
proof given in [12]. In particular, when R = N /2, deg, ;3(SURJgr ) = O(N3*). Our prior work [12,18]
built directly on the approximate-degree lower bound for SURJg v to give near-optimal lower bounds on
the (1/3)-approximate degree of AC? (see Section 3.3 for details).

3 As is standard, we associate —1 with logical TRUE and +1 with logical FALSE throughout.
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Our result. In spite of the progress described above, the threshold degree SURJg y remained open.
For R < N/2, an upper bound of O(min{R,N'/?}) follows from standard techniques (we prove this in
Section 6 for completeness). The best known lower bound was Q(min{R,N'/3}), obtained by a reduction
to Minsky and Papert’s threshold degree lower bound for AND, /3 o OR, /5. In this work, we settle the
threshold degree of SURJg y, showing that the known upper bound is tight up to logarithmic factors.

Theorem 1.1. For R < N/2, the threshold degree of SURJg y is ®(min{R,N'/?}). In particular, if
R=N'2 deg, (SURJry) = O(N'/?).

In addition to resolving a natural question in its own right, Theorem 1.1 matches the best prior
threshold degree lower bound for AC, previously proved in [44] for a much more complicated function
computed by a circuit of strictly greater depth. Furthermore, with some extra effort, our lower bound for
SURJg v extends to give an Q(nl/ 2) lower bound on the UPP* complexity of a related AC? function,
yielding progress on Open Question 1 (see Section 1). In contrast, Sherstov’s Q(nl/ 2) threshold degree
lower bound for AC? [44] is not known to extend to UPP® complexity. As stated in Section 1, the best
previous UPP*® lower bound for an AC? function was Q(n?/°).

Corollary 1.2. There is an AC° function F: {—1,1}" — {—1,1} such that UPP*(F) > Q(n'/?).

1.1.2  AC has nearly maximal PP complexity

In our second result, for any constant § > 0, we exhibit an ACY function f: {—1,1}" — {—1,1} with
(E:gg (f) =Q(n'?) forsome £ = 1 — 2-2("") This is a major strengthening of our earlier results [12,18],
which gave a similar result for € = 1 /3. By combining this large-error approximate-degree lower bound
with a “query-to-communication lifting theorem” for PP [40], we obtain an Q(nlf‘s) bound on the PP*°
complexity of an AC? function, nearly resolving Open Question 2 from the previous section.

Theorem 1.3. For any constant 8 > 0, there is an AC® function F: {—1,1}"" — {—1,1} with PP*(F) =
Q(n'-9).

The best previous lower bound for the PP complexity of an AC? function was Q(nl/ 2) [44].

2 Algorithmic and complexity-theoretic applications

To introduce the applications of our results, we begin by defining the query complexity quantities UPP®
and PP and the communication complexity quantities UPP*® and PP,

Query models. In randomized query complexity, an algorithm aims to evaluate a known Boolean function
f on an unknown input x € {—1,1}" by reading as few bits of x as possible. We say that the query cost of
a randomized algorithm is the maximum number of bits it queries for any input x.

o UPPY considers “unbounded error” randomized algorithms, which means that on any input x, the

algorithm outputs f(x) with probability strictly greater than 1/2. UPP(f) is the minimum query
cost of any unbounded-error algorithm for f.
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Reference PP™ PP UPP™ UPP* Circuit
and log(threshold weight)|=z log(1/discrepancy)|= threshold degree|~s log(sign-rank)| Depth
[33] — — Q(n'/3) — 2
[30] Q(n'/3) — — — 3
[21] — Q(log (n)) — Q(log"(n)) | O(k)
[35] Q(n'Ploghn) — Q(n'Plogh(n)) — o(k)
[39] — Q(n'73) — — 3
[11,40] — Q(n'73) — — 3
[38] — — — Q(n'/3) 3
[14] Q(n*73) Q(n?h3) — — 3
[43] Q(n'?79) Q(n'27?) Q(n'27?) — 0(1/6)
[44] Q) — Qn37) — 3
[44] Q(n'/?) Q(n'/?) Q(n'/?) — 4
[15] — — — Q(n*/3) 3
[16] Q(n'/2-9) Q(n'/2-9) — — 3
This paper Q(n'/?) Q(n'/?) Q(n'/?) — 3
This paper — — — Q(n'/?) 7
This paper Q(n'%) Q(n'%) — — 0(1/6)

Table 1: Comparison of our new bounds for AC® to prior work in roughly chronological order. The circuit
depth column lists the depth of the Boolean circuit used to exhibit the bound, é denotes an arbitrarily
small positive constant, and k an arbitrary positive integer. All Boolean circuits are of polynomial size.

e PPY(f) captures “large” (rather than unbounded) error algorithms. If a randomized query algorithm
outputs f(x) with probability 1/2+ B for all x, then the PP-cost of the algorithm is the sum of the
query cost and log(1/f). The log(1/3) term here is a proxy for the number of bits of randomness
used by the algorithm. Hence, the PP-cost of a query algorithm is a lower bound on the runtime,
assuming both a query and a random coin toss cost at least one time step. PPY( f) is the minimum
PP-cost of any randomized query algorithm for f.

Communication models. UPP“ and PP consider the standard two-party setup where Alice holds an
input x and Bob holds an input y, and they run a private-coin randomized communication protocol to
compute a function f(x,y), while minimizing the number of bits they exchange. In direct analogy to the
query complexity measures above, we say that the communication cost of a randomized protocol is the
maximum number of bits Alice and Bob exchange on any input (x,y).

e UPP(f) [36] is the minimum communication cost of any randomized protocol that outputs f(x,y)
with probability strictly greater than 1/2 on all inputs (x,y).

e PP°(f) [5] is the minimum PP-cost of a protocol for f, where the PP-cost of a protocol that
outputs f(x,y) with probability 1/2+ B for all (x,y) is the sum of the communication cost and

log(1/B).

We now give an overview of the applications of Theorem 1.3 and Corollary 1.2. Further technical
background and details are given in Section 9.
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2.1 Applications of Theorem 1.3

PP is known to be equivalent to two measures of central importance in learning theory and communi-
cation complexity, namely margin complexity [32] and discrepancy [26]. Hence, Theorem 1.3 implies
that AC® has nearly maximal complexity under both measures. Below, we highlight four additional
applications.

o Communication Complexity. The PP communication model can efficiently simulate almost
every two-party communication model, including P (i.e., deterministic communication), BPP
(randomized communication), BQP (quantum), and PP The only well-studied exceptions are
UPP*°, and communication analogs of the polynomial hierarchy (the latter of which we do not know
how to prove lower bounds against). Hence, in showing that AC? has essentially maximal PP
complexity, we subsume or nearly subsume all previous results on the communication complexity
of ACY.

e Cryptography. Bogdanov et al. [7] observed that for any f: {—1,1}" — {—1,1} and d > 0, if
one shows that cfé:gg (f) > d, then one obtains a scheme for sharing a secret bit b € {—1, 1} among
n parties such that any subset of d shares provides no reconstruction advantage, yet applying f to all
n shares yields b with probability at least 1/2+ €/2. They combined this with known approximate-
degree lower bounds for AC? functions to get secret sharing schemes with reconstruction procedures
in AC®. Via this connection, an immediate corollary of Theorem 1.3 is a nearly optimal secret
sharing scheme in AC: for any desired constant § > 0, any subset of n! =% shares provides no
reconstruction advantage, yet all n shares can be successfully reconstructed (by applying an AC®
function) with probability 1 — 21"’

e Learning Theory. Valiant [48] introduced the evolvability model to quantify how complex
functions can emerge through an evolutionary process over realistic population sizes within
realistic time periods. Feldman [20] showed that the “weak evolvability” of a class of functions
F={01,...,0,3/} is characterized by the PP* complexity of the function F(x,y) = ¢x(y). Hence,
a consequence of Theorem 1.3 is that there are AC? functions that are nearly maximally hard to
evolve. That is, for any constant § > 0, there are AC? functions that require either o' generations,
or populations of size 2" to evolve, even if one only wants evolution to produce a function that
has advantage just 27""% over random guessing. See [20] for additional details.

e Circuit Complexity. If PP“°(f) > d, then f is not computable by Majority-of-Threshold circuits
of size 22(@) [34]. Hence, by showing that AC? has nearly maximal PP complexity, we show that
there are AC” functions that are not computed by Majority-of-Threshold circuits of size 27'"° That
is, AC? has essentially no non-trivial simulation by Majority-of-Threshold circuits (in contrast,
AC? can be efficiently simulated by depth-three Majority circuits [3]).

2.2 Applications of Corollary 1.2

As indicated in Section 1, UPP(F) is known to be characterized by (the logarithm of) of the sign-rank
of the matrix [F(x,y)],yeq—1,1y»n [36].* Hence, Corollary 1.2 implies an exp(Q(n'/?)) lower bound on

4The sign-rank of a matrix M with entries in {=1} is the least rank of a real matrix M’ that agrees in sign with M entry-wise.
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the sign-rank of AC function. Below, we highlight two additional applications of Corollary 1.2, based on
the following connections between communication complexity, circuit complexity, and learning theory.
In communication complexity, UPP® is the most powerful two-party model against which we know
how to prove lower bounds. In circuit complexity, if UPP(f) > d, then f cannot be computed by
Threshold-of-Majority circuits of size 29(d) [22]. (Threshold-of-Majority circuits represent the most
powerful class of threshold circuits against which we can prove superpolynomial lower bounds.) In
learning theory, it is commonly assumed that data can be classified by a halfspace in many dimensions;
the UPP““-complexity of a concept class precisely captures how many dimensions are needed. To connect
this to a previously mentioned example, Klivans and Servedio [27] observed that an upper bound of d
on the UPP*® complexity of a concept class C yields a PAC learning for € running in time 2°(¢). They
used this result to give a 2001"°)_time algorithm for PAC-learning CNFs. This remains the state-of-the-art
algorithm for this fundamental problem. Accordingly, Corollary 1.2 has the following implications.

e Circuit Complexity. There are AC? functions that are not computable by Threshold-of-Majority
Circuits of size 220",
e Learning Theory. UPP*-based learning algorithms cannot learn AC? in time better than 20(n'?)

3 Techniques

3.1 The SURJECTIVITY Lower Bound

For a function f,, let =V denote the partial function obtained by restricting f to the domain of inputs of
Hamming weight at most N. The e-approximate degree of =V, denoted deg, (f="), is the least degree
of a real polynomial p such that

|p(x) — f(x)| < € for all inputs x of Hamming weight at most N. (3.1)

Note that Property (3.1) allows p to behave arbitrarily on inputs x of Hamming weight more than N.
Similarly, the threshold degree of =" is the least degree of a real polynomial p such that

p(x) - f(x) > 0 for all inputs x of Hamming weight at most N.

Our prior work [18] showed that the €-approximate (respectively, threshold) degree of SURJg v is
equivalent to the e-approximate (respectively, threshold) degree of (ANDg o ORy)=N. Hence, the main
technical result underpinning our threshold-degree lower bound for SURJ is the following theorem about
the threshold degree of (ANDg o ORy)=" (we have made no effort to optimize the logarithmic factors).

Theorem 3.1. Let R = N'/2. Then deg., ((ANDR o ORN)SN) = Q(N"2/10g*%N).

Discussion. Theorem 3.1 is a substantial strengthening of the classic result of Minsky and Papert [33]
mentioned above, which established that the total function MPy/2 ;== ANDy12 0 ORy on n = N3/2

inputs has threshold degree Q(N'/?). Theorem 3.1 establishes that Minsky and Papert’s lower bound
holds even under the promise that the n-bit input to MPy/» ,, has Hamming weight at most N = n2/3.
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That is, any polynomial that sign-represents AND, /5 0 OR /3 on inputs of Hamming weight at most n?3

has degree Q(nl/ 3), even when p is allowed to behave arbitrarily on inputs of Hamming weight larger
than n*/3.

Proof overview for Theorem 3.1 and comparison to prior work. Like much recent work on approxi-
mate-degree and threshold-degree lower bounds, our proof makes use of dual polynomials. A dual
polynomial is a dual solution to a certain linear program capturing the approximate or threshold degree of
any function, and acts as a certificate of the high approximate or threshold degree of the function.

A dual polynomial that witnesses the fact that deg (fy) > d is a function y: {—1,1}" — {—1,1}
satisfying three conditions:

o y(x)-f(x) >0forall x € {—1,1}M. If y satisfies this condition, we say W agrees in sign with f.
® Yic{-1,1M |w(x)| = 1. If y satisfies this condition, it is said to have ¢;-norm equal to 1.

e For all polynomials p: {—1,1} — R of degree at most d, Yre(—11p p(x) - y(x) = 0. If y satisfies
this condition, it is said to have pure high degree at least d.

A dual witness for the fact that (ﬂ{gs (fm) > d is similar, except that the first condition is replaced with:

® Yoci—1m W(x) - f(x) > &. If y satisfies this condition, it is said to be &-correlated with f. If
y(x)- f(x) <0, we say that y makes an error at x.

Sherstov [44] reproved Minsky and Papert’s result by constructing an explicit dual witness for
MP 1.2 y» via a two-step process. First, Sherstov started with a dual witness Whase for the fact that

&evge(MPNl/Z,N) =Q(N'?), fore =1-27V",

The function Wj,,ee Was introduced in our prior work [14], where it was constructed by combining a dual
witness for AND 12 with a dual witness for ORy via a technique called dual block composition [31,42,47]
(see Section 5.8 for details of this very important technique for combining dual witnesses).

Unfortunately, W5 falls short of witnessing Minsky and Papert’s threshold-degree lower bound
because it makes errors on some inputs. In the second step of Sherstov’s construction [44], he adds in a
correction term that zeros out the errors of Wy, Without disturbing the sign of Y,,¢e On any other inputs,
and without lowering its pure high degree.

Theorem 3.1 asserts that M PI%,{\;Z y satisfies the same threshold-degree lower bound as MP 12  itself.
To prove Theorem 3.1, we need to construct a dual witness v that not only reproves Minsky and Papert’s
classic lower bound for MP ;12 - but also satisfies the extra condition that:

y(x) = 0 for all inputs x of Hamming weight more than N . 3.2)
ere, the Hamming weight of x is the number of —1 entries.) To accomplish this, we a a nove
(H he H ing weight of x is th ber of —1 ies.) T plish thi pply 1

strategy that can be thought of as a three-step process. First, like Sherstov, we start with Wj,,¢e. Second,
we modify Wpase to obtain a dual witness y; _. that places significant mass on all inputs of Hamming
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weight at most d, for some d = Q(N 1/ 2) (details of the construction of V. are described two paragraphs
hence). More specifically, we ensure that y; ___ satisfies:

| Wi ace (x)| > n~¢ for all inputs x of Hamming weight at most d . (3.3)

We refer to this property by saying that y{__. is “smooth” or “large” on all inputs of Hamming weight at
most d. Note that, in modifying Wpase to obtain y; __ , we do not correct the errors that Yj,,e makes, nor
do we ensure that y . is supported on inputs of Himming weight at most N.

Third, we add in a correction term, very different than Sherstov’s correction term, that not only zeros
out the errors of y[__., but also zeros out any mass it places on inputs of Himming weight more than N.
While the general technique we use to construct this correction term appeared in our prior work [12, 18],
the novelty in our construction and analysis is two-fold. First, the technique was used in our prior work
only to zero out mass placed on inputs of Hamming weight more than NV (i. e., to ensure that Equation (3.2)
is satisfied), not to correct errors. Second, and more importantly, we crucially exploit the largeness of
V| ... on inputs of Hamming weight at most d to ensure that the correction term does not disturb the sign
of ¥, ... on any inputs other than those on which it is deliberately being zeroed out. This is what enables
us to obtain a threshold-degree lower bound, whereas our in our prior work we were only able to obtain
e-approximate-degree lower bounds for € bounded away from 1.

Our “smoothing followed by correction” approach appears to be significantly more generic than the
correction technique of [44]. For example, prior work of Bouland et al. [9] proved an Q(nl/ ) lower
bound on the threshold degree of a certain function denoted GAPMAJ, 12 0 PTP, 34, and used this result
to give an oracle separating the complexity classes SZK and UPP, thereby answering an open question of
Watrous from 2002. Our techniques can be used to give a much simpler proof of this result of this lower
bound on threshold degree. We expect that our technique will find additional applications in the future.

Details of the smoothing step. As stated above, the dual witness W, 5. from our prior work does not
have the property we need (see Equation (3.3)) of being “large” on all inputs of Hamming weight at most
d=Q(N'?).

Fortunately, we observe that although Y, is not large on all inputs of Hamming weight at most
d, it is large on one very special input of low Hamming weight, namely the ALL-FALSE input. That is,
Whase(1) >27%. So we just need a way to “bootstrap” this largeness property on 1 to a largeness property
on all inputs of Hamming weight at most d. Put another way, we need to be able to treat other inputs of
Hamming weight at most d as if they actually have Hamming weight 0. But MP 12  := ANDy12 0 ORy
has a property that enables precisely this: we can fix the inputs to any constant fraction ¢ of the
OR gates to an arbitrary value in OR™! (—1), and the remaining function of the unrestricted inputs is
AND (i _).g ©ORy. This is “almost” the same function as ANDg o ORy; we have merely slightly reduced
the top fan-in, which does not substantially lower the threshold degree of the resulting function.

We exploit the above observation to achieve the following: for each input x of Hamming weight at
most d, we build a dual witness v, targeted at x (i. e., that essentially treats x as if it is the ALL-FALSE
input). We do this as follows. Let T be the set of all OR gates that are fed one or more —1s by x, and let
SCIN 1/2 - N] be the union of the inputs to each of the OR gates in 7. Let W5 be the dual witness for
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AND /27 © ORy given in our earlier paper [14]. We let

- if ve =
vx (y) — Wbase (yS) 1 )’S .XS
0 otherwise,

where ys denotes the set of all the coordinates of y other than those in S.

The dual witness y ___ is then defined to be the average of the v’s, over all inputs x of Hamming
weight at most 4. This averaged dual witness ¥ has all of the same useful properties as Whase, and
additionally satisfies the key requirement captured by Equation (3.3).

3.2 Extension to UPP*‘: Proof of Corollary 1.2

Building on the celebrated framework of Forster [21], Razborov and Sherstov [38] developed techniques
to translate threshold-degree lower bounds into sign-rank lower bounds. Specifically, they showed that,
in order for a threshold-degree lower bound of the form deg, (f,) > d to translate into a UPP* lower
bound for a related function F, it suffices for the threshold-degree lower bound for f;, to be exhibited by a
dual witness ¢ satisfying the following smoothness condition:

|¢(x)] =279 . 27" for all but a 2~ fraction of inputs x € {—1,1}". (3.4)

Note that this is a different smoothness condition than the one satisfied by the dual witness v __ discussed
above for MP 1> , (Equation (3.3)): on inputs x of Hamming weight at most d, |y{__.(x)| is always at
least n~¢ >>279.27", whereas on inputs x of Hamming weight more than d, |y{,_ (x)| may be 0. In
words, |y .. (x)| is very large on inputs x of Hamming weight at most 4, but may not be large at all on
inputs of larger Hamming weight. In contrast, Equation (3.4) requires a dual witness to be “somewhat
large” (within a 2~ 2@ factor of uniform) on nearly all inputs.

In summary, our construction of a dual witness for M Piﬁz y thatis sketched in the previous subsection

is not sufficient to apply Razborov and Sherstov’s framework to SURJ RN, for two reasons. First, the dual
witness we construct for M Pﬁf\/lz y 18 not smooth in the sense of Equation (3.4), as it is only “large” on
inputs of Hamming weight at most d. Second, to apply Razborov and Sherstov’s framework to SURJ RN

we actually need to give a smooth dual witness for SURJg y itself, not for M Pif\/’z N Note that SURJg v is

defined over the domain {—1,1}" where n = NlogR, while M Pif\/’z,N is defined over subset of {—1,1}"R

consisting of inputs of Hamming weight at most N.

We address both of the above issues as follows. First, we show how to turn our dual witness
u for MPI%,%N into a dual witness & for the fact that deg, (SURJg ) > d, such that & inherits the
“largeness” property of p on inputs of Hamming weight at most d. Second, we transform & into a
dual witness 7 for the fact that deg, (SURJR,N oAN Dlogzn o PARITY10g3n> > d, such that 7 satisfies the
smoothness condition given in Equation (3.4). We conclude that SURJg 5 o AN Dlog2 e PARITYIOgs , can
be transformed into a related function F (on O(n) inputs, and which is also in AC?) that has sign-rank
exp(Q(n'/?)).
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3.3 The PP bound: Proof of Theorem 1.3

As mentioned in Section 1.1.2, the core of Theorem 1.3 is to exhibit an AC? function f such that
cff\:/g8 (f) =Q(n'~%) for some € = 1 — 27900 o accomplish this, we prove a hardness amplification
theorem that should be understood in the context of a weaker result from our prior work [18].

As stated in Section 3.1, for € = 1/3, our prior work [18] showed how to take any Boolean function
f, in ACY with e-approximate degree d and transform it into a related function g on roughly the same
number of variables, such that g is still in AC?, and g has significantly higher &'-approximate degree
for some €’ & 1/3. This was done in a two-step process. First, we showed that in order to construct a
“harder” function g, it is sufficient to identify an AC function G defined on poly(n) inputs such that for
some ¢ = n - polylog(n), cfeée,(GSZ) > d. > Second, we exhibited such a G. In our prior work [12, 18],
for general functions f;, the function G was f,, o AND, 0 OR,s, where r = 10logn, and m’ = ©®(n/d).

We would like to prove a similar result, but we require that G have larger €' -approximate degree
than f,,, where €' is exponentially closer to 1 than is € itself. Unfortunately, the definition of G from
our earlier papers [12, 18] does not necessarily result in such a function. For example, if f,, = OR,, (or
any polylogarithmic DNF for that matter), then the function G = f;, o AND, o OR,,, is also a DNF of
polylogarithmic width, and it is not hard to see that all such DNFs have e-approximate degree at most
polylog(n) for some £ = 1 — 1 /nPOWloe(n),

To address this situation, we change the definition of G. Rather than defining G := f,, o AND, 0c OR,,
we define G = GAPMAJ; o f. o AND, o OR,, for appropriately chosen settings of the parameters ¢, z, r,
and m. (For simplicity of exposition, some of these parameters are described differently here than in the
proof in Section 8.) Here, GAPMAJ, denotes any function evaluating to 1 on inputs of Hamming weight
at most 7/3, —1 on inputs of Hamming weight at least 27 /3, and taking any value in {—1, 1} on all other
inputs (such functions are also called approximate majorities, and it is known that there are approximate
majorities computable in ACO) GAPMAJ has also played an important role in related prior work [9, 18].

In order to show that deg, (G={) > deg, (f,) for an €’ that is exponentially closer to 1 than is &, we
require a more delicate construction of a dual witness than our papers [12,18]. After all, those papers only
required a dual witness for G=¢ with correlation at least 1/3 with G, while we require a dual witness
achieving correlation with G= that is exponentially close to 1. Roughly speaking, in [12, 18] we were
able to get away with exclusively using the simple and clean technique called dual block composition
(described in Section 5.8) for constructing dual witnesses for block composed functions by combining
dual witnesses for the constituent functions. In this article, we instead use a closely related but more
involved construction introduced by Sherstov [41]. (Sherstov introduced his construction to prove that
approximate degree satisfies a type of direct-sum theorem.)

More specifically, suppose that for some positive integer k, f, has €(z)-approximate degree at least
d(z) = 2/® D where €(z) = 1 —22"“"". In our definition of G, we set intermediate parameters
t =nt/(k+2) 7 — pktD/(42) " — 10logn, and m = n¥ **2) and we build a dual witness for G=/ via a
multi-step construction.

In Step 1, we take dual witnesses Yy, WanD,, and YoR,, for f;, AND,, and OR,, respectively, and we
combine them using the technique of Sherstov [41], to give a dual witness ¥ for f, 0o AND, o OR,, satisfying
the following conditions: y has pure high degree at least D(n) = n*+1)/(k+2) — g(n)*+1)/k >, 4(n), and s

SThis step was also used in the analysis of SURJg x outlined in Section 3.2 above, where G was the function ANDg o ORy.
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correlation with with f, o AND, o OR,, is €” ~ €(z). That is, y witnesses the fact that the £”-approximate
degree of f; 0 AND, 0o OR,, is much larger than the €(n)-approximate degree of f, itself.

This step of the construction is in contrast to our prior work, which constructed a dual witness
for f, o AND, o OR,, via direct dual block composition of Yy, Wanp,, and Yor,. Direct dual block
composition does not suffice for us because it would yield a dual witness with significantly worse
correlation with f; o AND, o OR,, than &(z).

While achieving correlation €” & £(z) is an improvement over what would obtain from direct dual
block composition, it is still significantly farther from 1 than is €(n), i.e., | —€” > 1—¢(n). And we
ultimately need to construct a dual witness for G=! that is significantly closer to 1 than is £(n). To address
this issue, in Step 2 of our construction, we use dual block composition to turn ¥ into a dual witness 1 for
G = GAPMAJ, o f; 0 AND, 0 OR,, satistying the following conditions: 1 has the same pure high degree
as 7, and moreover 7 has correlation at least &' = 1 — 22 V) wih 6.

However, after Step 2, we are still not done, because 1) places some mass on inputs of Hamming
weight as large as 7-z-r-m > (. Hence 7 is only a dual witness to the high &’-approximate degree of G,
not the high &’-approximate degree of G=/ (recall that any dual witness for G=, must evaluate to 0 on all
inputs of Hamming weight larger than ¢, as described in Equation (3.2)). Nonetheless, as in our prior
work [12, 18], we are able to argue that 1) places very little mass on inputs of Hamming weight more than
¢, and thereby invoke techniques from these papers to zero out this mass. The reason this final step of
the argument is not immediate from [12, 18] is as follows. Although these papers developed a precise
understanding of how much mass is placed on inputs of Hamming weight more than £ by dual witnesses
constructed via basic dual block composition, the dual witness ¥ for f, o AND, o OR,, that we constructed
in Step 1 was not built by invoking pure dual block composition. Our key observation is that Sherstov’s
technique that we invoked to construct ¥ is “similar enough” to vanilla dual block composition that the
precise understanding of dual block composition developed in our prior work can be brought to bear on
our dual witness 1.

In summary, there are two main technical contributions in our proof of Theorem 1.3. The first is the
identification of a hardness amplification construction for €-approximate degree that not only amplifies
the degree against which the lower bound holds, but also the error parameter €. The second is constructing
a dual polynomial to witness the claimed lower bound, using techniques more involved and delicate than
the vanilla dual block composition technique that sufficed in [12, 18].

4 Subsequent work and discussion

Subsequent to our work, Sherstov and Wu [46] have made major progress toward resolving Open Problem
1 by showing nearly optimal threshold degree and sign-rank lower bounds for AC?. Specifically, for
every k > 1, they exhibit a family of depth-k AC circuits with threshold degree Q(n*~1/(+1)) This
generalizes Minsky and Papert’s lower bound of Q(nl/ 3) on the threshold degree of DNF, as well as our
lower bound of Q(n!/?) for the depth-3 SURJECTIVITY function. Sherstov and Wu, moreover, show
that for any positive constant § > 0 there is a family of AC circuits with depth O(1/8) and sign-rank
exp (Q(nl _5)). This gives an almost optimal improvement to our sign-rank lower bound of exp (Q(nl/ )
on an AC? function.

As in our proof of Theorem 1.3 (see Theorem 8.2 in Section 8), as well as our earlier paper [18],
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Sherstov and Wu obtain their lower bound on the threshold degree of AC® by recursively applying a
new hardness amplification theorem. Their hardness amplification theorem shows how to convert a
function f; into a new function g,, computable by circuits with slightly higher depth and roughly the
same size, but with polynomially larger threshold degree. Again as in the proof of Theorem 1.3, in
order to obtain such a g, it suffices to construct a function G with deg, (G=") > deg_ (f). Starting
from a function f. with threshold degree z*~1)/*+1) the function G that they identify as sufficient for
this purpose is G = f; o MP, >, where z = n*+D/(+3) and r = n?/*+3) When f; is a trivial function,
this recovers our lower bound of Q(n'/?) for SURJECTIVITY. Hence, their construction in full can be
viewed as a generalization of our Theorem 3.1 that is amenable to recursive application. This requires
several technical new ideas in the construction of the dual witness. However, we remain optimistic that
the simplicity of our analysis for SURJECTIVITY will nonetheless lead to future applications of our
techniques.

Sherstov and Wu’s sign-rank lower bound follows from a similar high-level (though more techni-
cally demanding) strategy, where they show that smooth threshold degree also obeys such a hardness
amplification theorem.

While these new results resolve the most glaring question raised in the initial version of this paper,
a number of interesting directions remain for further study. A common feature of our large-error
approximate-degree lower bound and Sherstov and Wu'’s threshold-degree and sign-rank lower bounds
for AC is that, in order to obtain lower bounds of the form Q(n'~?), we must consider functions
computed by circuits of depth ®(1/6). This contrasts with the situation for bounded-error approximate
degree [18], where a lower bound of Q(n!~?) can be obtained at depth only O(log(1/8)). Can one show
that there are AC® functions f of depth O(log(1/8)) with (I(;ge (f)=Qn' %) fore =1— 27900 op
with deg_ (f) = Q(n'~%)? There is a common underlying reason why our construction and Sherstov
and Wu’s construction both require circuits of depth ®(1/8) and not ®(log(1/9)): a component of the
hardness amplifier in both constructions (in our case, GAPMAJ, 1/4+1), and in Sherstov and Wu’s case, the
top gate of MP,.,2) is used to amplify error but does not amplify degree. In contrast, in the construction of
[18] for lower bounding bounded-error approximate degree, up to a logarithmic factor, all of the hardness
amplifier is used to amplify degree.

We would also like to highlight the question of proving sublinear upper bounds on the threshold
degree of AC. Given the surprising O(R'/*- N'/2) upper bound on the (1/3)-approximate degree of
SURJg v from recent work [12,45], we have begun to seriously entertain the possibility that for every
function f computable by AC® of depth , there is some constant §(k) > 0 such that the threshold degree
(and possibly even (1/3)-approximate degree) of f is O(n'~9). Unfortunately, we cannot currently even
show that this is true for depth-three circuits of quadratic size. Any progress in this direction would be
very interesting, and we believe that such progress would likely lead to new circuit lower bounds.

Outline for the rest of the paper. Section 5 covers technical preliminaries. Section 7 contains the proof
of our tight threshold-degree lower bound for SURJECTIVITY (Theorem 1.1) and its extension to a
sign-rank lower bound for a related function in AC? (Corollary 1.2). Section 8 proves our nearly optimal
bound on the discrepancy of AC? (Theorem 1.3). Section 9 elaborates on applications of these results in
communication complexity, circuit complexity, learning theory, and cryptography.
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5 Preliminaries

5.1 Notation

For a natural number N, let [N] = {1,2,...,N} and [N]p = {0,1,2,...,N}. All logarithms in this paper
are taken in base 2 unless otherwise noted via the notation In, which refers to base e. For x € R, define
sgn(x) = —1 if x < 0 and 1 otherwise. For any set S, the notation x ~ § means that x is drawn uniformly
at random from S.

As mentioned in Section 1, we sometimes use subscripts to indicate the number of variables on which
a function is defined. For example, we denote OR: {—1,1}" — {—1,1} by OR,.

For any input x € {—1,1}", |x| = [{i: x; = —1}| denotes the Hamming weight of x. J{,, denotes the
set {—1,1}", and for any d < n, we define > := {x € {—1,1}": |x| < d}. Similarly, } ¢ := {x €
{—1,1}": |x| > d}. Given a Boolean function f,, we denote by f=? the partial function obtained by
restricting the domain of f, to H{=9.

5.2 Threshold degree and its dual formulation

Definition 5.1. Let D C {—1,1}", and let f be a function mapping D to {—1,1}. The threshold degree
of f, denoted deg , (f), is the least degree of a real polynomial p: {—1,1}" — R such that p(x)- f(x) >0
when x € D. No constraint is placed on p(x) for any x € ({—1,1}*\ D).

In this paper, we make essential use of a (standard) dual formulation of threshold degree. To describe
this dual formulation, we need to introduce some terminology.

Definition 5.2. Let y: {—1,1}" — R be any real-valued function on the Boolean hypercube. Given
another function p: {—1,1}" — R, we let (Y, p) =Y c(_1,1}» W(x) - p(x), and refer to (v, p) as the
correlation of y with p. If (y, p) = 0 for all polynomials p of degree at most d, we say that y has pure
high degree at least d. We let || W1 == Yreq—1 1y |W(x)|, and refer to ||y][, as the £;-norm of y.

The following theorem provides the aforementioned dual formulation of threshold degree.

Theorem 5.3. Let f: D — {—1,1} with D C {—1,1}". Then deg, (f) > d if and only if there is a real
function y : {—1,1}"" — R such that:

1. (Pure high degree): W has pure high degree at least d.

2. (Non-triviality): ||y||1 > 0.

3. (Sign Agreement): y(x)- f(x) >0 forallx € {—1,1}".

4. (Appropriate Support): y(x) =0 forall x € {—1,1}"\ D.

We refer to functions mapping {—1,1}" — R as dual polynomials. For a function f: D — {—1,1},
we refer to any y satisfying the conditions of Theorem 5.3 as a threshold degree dual polynomial for
f, or alternatively as a dual witness to the fact that deg (f) > d. Along the way to constructing a
threshold-degree dual polynomial for f, we will often construct dual polynomials that almost satisfy the
Sign Agreement and Appropriate Support conditions, and it will be convenient to give names to the inputs
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on which these two conditions are violated. To this end, given a dual polynomial y: {—1,1}" — R,
let E(y, f) ={xeD: y(x) - f(x) <0}, and let W(y, f) :={x € {—1,1}"\D: |y(x)| > 0}. For each
input x € €, we say that Yy makes an error on x. We will let E(Y, f) == Yree(y.p) [W(x)| and W(y, f) ==
Yoew(y.p) W)

5.3 Approximate degree and its dual formulation

Definition 5.4. Let D C {—1,1}", and let f be a function mapping D to {—1,1}. The €-approximate
degree of f, denoted deg.(f), is the least degree of a real polynomial p: {—1,1}" — R such that
|p(x) — f(x)| < & when x € D. No constraint is placed on p(x) for any x € ({—1,1}"*\ D).

The following theorem provides a standard dual formulation of approximate degree.

Theorem 5.5. Let f: D — {—1,1} with D C {—1,1}". Then deg,(f) > d if and only if there is a real
function y : {—1,1}"" — R such that:

1. (Pure high degree): W has pure high degree at least d.
2. (Non-triviality): ||y]||1 > 0.

3. (Correlation): Y11y W(x) - f(x) > €[y
4. (Appropriate Support): y(x) =0 for all x € {—1,1}"\ D.
We will also frequently use the following simple fact, which is immediate from linearity.

Fact 5.6. Suppose that y,...,y: {—1,1}" — R all have pure high degree at least d. Then their sum,
W1 + -+ + W, has pure high degree at least d.

5.4 The Surjectivity function

Definition 5.7. For N > R, define the function SURJg v : [R]Y — {—1,1} by SURJg N (s1,...,s5) = —1
iff for every j € [R], there exists an i such that s; = j.

When N and R are clear from context, we will refer to the function SURJ without the explicit
dependence on these parameters. It will often be convenient to think of the input to SURJg  as a function
mapping {—1,1}" — {—1,1} rather than [R]N — {—1,1}. When needed, we assume that R is a power
of 2 and an element of [R] is encoded in binary using log R bits. In this case we will view Surjectivity as
a function on n = NlogR bits, i.e., SURJ: {—1,1}" — {—1,1}.

For technical reasons, when proving lower bounds, it will be more convenient to work with a variant
of SURJ where the range [R] is augmented by a “dummy element” 0 that is simply ignored by the function.
That is, while any of the items s1,...,sy may take the dummy value 0, the presence of a 0 in the input
is not required for the input to be deemed surjective. We denote this variant of Surjectivity by dSURJ.
More formally:

Prior work (e. g., [1, 12]) has also considered another natural definition of approximate degree for promise problems, that
does require p(x) to be bounded in magnitude outside of the domain D on which f is defined. For our purposes in this paper, the
definition that does not constrain p on inputs outside of D is most useful.
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Definition 5.8. For N > R, define the function dSURJg y : [R]Y — {—1,1} by dSURJg N (s1,...,5n) =
— 1 iff for every j € [R], there exists an i € [N] such that s; = j.

The following simple proposition shows that a lower bound on the approximate degree of dSURJ
implies a lower bound for SURJ itself.

Proposition 5.9 (Bun, Kothari, and Thaler [12]). Let € > 0 and N > R. Then
deg, (dSURJg x) < deg, (SURJg; 1y 11) - log(R+1).

We will also use two additional simple properties of SURJg x. The first roughly says that increasing
the range size can only make SURJECTIVITY harder to approximate (so long as the domain size remains
significantly larger than the range size).

Proposition 5.10. Ler € > 0. Then for any R’ > R, dAe/gg(SURJR‘,N) < d;gs(SURJRr,NJrRI_R).

Proof. Let p: {—1,1}(N+R=R)[log(R)T _, £_1 1} be a polynomial of degree d that g-approximates
SURJg n+r—r. We will use to p to construct a polynomial of degree d that £-approximates SURJg n.
Recall that an input to SURJg v takes the form (sy,...,sy) where each s; is the binary representation of a
number in [R]. For every (s1,...,sy) € [R]", observe that

SURJR’N(Sl, .. .,SN) = SURJR/,NJFR/,R(Sl,. SN, R+1,R+2,... ,Rl) .

Hence, the polynomial
p(st,...,sn,R+1,R+2,... R

has degree at most d and e-approximates SURJg . This assumes that for each element r of [R], each bit
of the encoding of rin {—1,1}1°2R (i_e., when r is viewed as an element of [R']), is a degree-1 function
of its encoding in {—1,1}/"°¢R1 (i_e., when r is viewed as an element of [R]). This property holds for
the natural binary encoding. Even if some encoding were used that did not satisfy this condition, then
p(si,...,snyR+1,R+2,... R) will have degree no larger than d - (log(R") + 1). O

The second says that increasing the domain size can only make SURJECTIVITY harder to approxi-
mate.

Proposition 5.11. Let € > 0. If N' > N, then (fe/gg(SU RJrn) < (@E(SURJRJFLNI).
Proof. For every (sq,...,sy) € [R]", observe that
SURJrn(S1,--.,87) = SURJgy1a (81,58, R+1,R+1,...,R+1),
where the element R + 1 is repeated N’ — N times. Hence, if p : {—1, 1}V oe®+DT 5 {1 1} is a

polynomial of degree d that £-approximates SURJg a7, then p(si,...,sy,R+1,R+1,...,R+1)isa
degree d polynomial that €-approximates SURJg y. O
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5.5 A useful auxiliary function

The following lemma, due to Razborov and Sherstov [38], gives a function that we will use many times
in this paper to “zero out” mass that intermediate dual witnesses Y place on the “bad” sets E(y, f) and

W(y, f).

Lemma 5.12 ([38, Proof of Lemma 3.2]). Let D,n € Nwith0 < D <n— 1. Then for everyy € {—1,1}"
with |y| > D, there exists a function ¢y : {—1,1}" — R such that

o) =1 (5.1)

x| >D,x#y = ¢y(x) =0 (5.2)

degp <D = (¢,p) =0 (5.3)

Y 9] sz”<|ly)|>. (5.4)
lx|<D

5.6 A dual witness for OR

We will repeatedly make use of a dual witness for the high approximate degree of the OR function. The
dual witness itself was essentially first constructed by Spalek [50], but we require an analysis of it due to
Bun, Kothari, and Thaler [12].

Proposition 5.13 ([12]). There exist constants cy,c; € (0,1) for which the following holds. Let T € N
and 1/T < 8 < 1/2. Then there is a function @ : [T]o — R such that

(gl

00)-Y o) >1-86, (5.5)

®(0) Zt(zll— 8)/2, (5.6)

i (1) =1, (5.7)

t=0

for all univariate polynomials g: R — R, degq < ¢;V 8T = i oi)-qt)=0, (5.8
t=0

o(t)] < 17OCXP(;C_2;2‘/S/\/T) Vi=1,...T. (5.9)

Proposition 5.14. Let TN € N with T <N, and let § > 1/T. Define ® as in Proposition 5.13. Define
the function v : {—1,1}¥ — R by y(x) = w(\x\)/(a‘) for x € 3" and y(x) = 0 otherwise. Then y
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satisfies:
(y,ORy) > 1-6, (5.10)
w(ly) = (1-8)/2, 5.11)
lwlh =1, (5.12)
for any polynomial p: {—1,1}¥ =R, degp < c1VST = (y,p) =0, (5.13)
Yy < TORCVONT) g 5.14)
lx|=t ’

5.7 Block composition of functions

Definition 5.15. For functions f:Y"” — Z and g : X — Y, define the block composition fog: X" —Z
by (fog)(xi,...,xy) = f(g(x1),...,8(xn)), forall xy,...,x, € X.

5.8 Dual block composition

We now define the dual block method [31,42,47] for combining dual witnesses for functions f, g in order
to obtain a dual witness for f o g. We then state two basic properties of the method.

Definition 5.16. Let ¥ : {—1,1} — R and y: {—1,1}™ — R be functions that are not identically
zero. Let x = (x1,...,xy) € ({—=1,1Y")™. Define the dual block composition of ¥ and y, denoted
Yry: ({—1,1}"M - R, by

e

(P xy) (x1,..xnr) =2 B sen(w(xi),..) - TTw(x)) .

Proposition 5.17 ([18,42]). The dual block composition has the following properties:

Preservation of (1-norm: Assume that ¥ has pure high degree at least 1. If ||| = 1 and ||y|1 =1,
then

¥yl =1. (5.15)
Multiplicativity of pure high degree: If (¥,P) = 0 for every polynomial P: {—1,1}" — {—1,1} of

degree less than D, and (y, p) = 0 for every polynomial p: {—1,1}" — {—1,1} of degree less than d,
then for every polynomial q: {—1,1}"M — {11},

degg<D-d = (¥xy,q)=0. (5.16)

Associativity:  Forevery § : {—1,1}"¢ - R, ¢ : {—1,1}" - R, and y: {—1,1}""v — R, we have
(Ex@)xy=Cx(pxy). (5.17)
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Given three dual witnesses §, @, and y, the associativity property allows us to write { x @ x ¥ without
ambiguity.

Next, we state an important lemma that follows directly from an analysis of Bun, Kothari, and
Thaler [12, Proof of Proposition 31]. This lemma shows that if y is the dual witness for ORy from
Proposition 5.14, then for any ®: {—1,1}® — {—1,1}, & = ®* y places an exponentially small amount
of mass on inputs outside of J(yy.”

Lemma 5.18 ( [12]). Fix a parameter 1 < o < R?, and assume that N > [20r/&|R. For any B € (0,1)
assume that ® : {—1,1}* — R satisfies ||®|; = 1. Furthermore, let v : {—1,1}¥ — R be symmetric
(meaning Y (x) depends only on |x|) and assume that y satisfies the following conditions:

N

Y Y vwx)=0, (5.18)
t=0|x|=t

N

Y ) vy =1, (5.19)
t=0|x|=t

Y lw(x)| < aexp(—Bt)/t* Vi=1,2,...,N. (5.20)

|x|=t

Then for sufficiently large R,

X%SN [(@xy)(x)| < ;exp (—JZVR) . (5.21)

In particular, if ¥ is the dual witness for ORy obtained from Proposition 5.14 with constant parameter
8 €(0,1) and with T = N/1og*(N), then there is a constant c3 > 0 such that

Y [(@xy)(x)| < 27 VNIoeN, (5.22)

¢

5.9 Hard functions and Hamming weight promises

In our earlier paper [18], we identified a natural class of functions satisfying the following condition: for
any function 2: {—1,1}* — {—1,1} in the class, there is a related function H: {—1,1}P¥(") — {1 1}
such that (ievge (h) = @((ievge (H=N)) for some N = @(n). This enables one to prove &-approximate degree
(respectively, threshold degree) lower bounds on /4 by lower bounding the €-approximate degree (threshold
degree) of the related function H, which is defined on significantly more variables than h itself, under the
promise that the Hamming weight of H’s input is at most N.

In more detail, this connection is as follows. Fix R,N € N, let f: {—1,1}* — {—1,1} and let
g:{—1,1}¥ — {—1,1}. Suppose g is a symmetric function, in the sense that for any x € {—1,1}" and
any permutation o : [N] — [N], we have

g(xX15- -y xN) = 8(Xs(1)s- - - s Xa(w)) -

7Our Lemma 5.18 follows directly from an intermediate calculation in the proof of Proposition 31 of [12].
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Equivalently, the value of g on any input x depends only on its Hamming weight |x|.

The functions f and g give rise to two functions. The first, denoted by FPP : [R]} — {—1,1},is a
certain property of a list of numbers s1,...,sy € [R]o. The second, which we denote by F=V : J—Cﬁ_]}; —
{—1,1}, is the block composition of f and g restricted to inputs of Hamming weight at most N. Formally,
these functions are defined as:

FPP(s1,...,sn) = f(g(L[si = 1],...,L[sy = 1]),...,g(L[s1 =R],...,L{sy =R]))

N Fflgx),...,e(xg)) ifxp,....xg € {=1, 1} |xy| 4+ +|xg| <N
F-= (xl,...,xR): .
undefined otherwise.

Observe that for f = ANDg and g = ORy, FP™P = dSURJg y. That is, dSURJg » can be expressed
as an ANDg (over all range items r € [R]) of the ORy (over all inputs i € [N]) of “Is input x; equal to r?”.
The following proposition relates the approximate degrees of the two functions FP™P and F=V.

Theorem 5.19 (Bun and Thaler [18]). Let f: {—1,1}% — {—1,1} be any function and let g : {—1,1}" —
{—1,1} be a symmetric function. Then for FP"°P and F=N defined above, we have

deg, (FP°P) > deg, (F=").
In addition,
deg (FP"°P) > deg, (F=").
6 The threshold degree of Surjectivity: Upper bound

For completeness, we prove a tight upper bound on the threshold degree of SURJg y. This upper bound
follows from standard techniques.

Claim 6.1. The function SURJg y has threshold degree O (min {R logR,N'/2. log3/2R}>.

Proof. We assume throughout that R < N, the claim being trivial otherwise. This claim follows from two
well-known facts, stated as Expressions (6.1) and (6.2) below.

deg, (SURJg ) < deg, (ANDgoORy)-logR (6.1)

deg. (ANDzoORy) = O (min {R, (NlogR)1/2}> (6.2)

Expression (6.1) holds because, as mentioned in Section 1.1.1, SURJg y is equivalent to the ANDg
(over all range items r € [R]) of the ORy (over all inputs i € [N]) of “Is input s; equal to r?”, and the
quoted question is computed by a conjunction of width log R over the input bits. That is, if

) —lifsi=
Vi = 1 otherwise,

THEORY OF COMPUTING, Volume 17 (7), 2021, pp. 1-46 21


http://dx.doi.org/10.4086/toc

MARK BUN AND JUSTIN THALER

then
SURJgn(x) = ANDR(ORN(y1,15---,¥N,1)s---s OR(V1Rs - - -, YN R))-

Hence, if p sign-represents ANDg o ORy, then p(y; 1,...,yn ) is a polynomial of degree deg(p) - logR
that sign-represents SURJg y.
Equation (6.2) holds by the following standard analysis. To show that

deg. (ANDgoORy) < O((NlogN)'/?),

we exploit the well-known fact that ({evgl/@R) (ORn) = ®(y/NlogR) [10,25]. Let p be a minimal degree
polynomial that uniformly approximates OR to error 1/(3R). For inputs x = (x,...,xg) € ({—1,1}" )R,
the polynomial Zle p(xj) + R — 1 sign-represents ANDg o ORy, and has degree at most deg(p) =
O(y/NIogR).
To show that deg, (ANDg o ORy) < O(R), we use the fact that there exist two linear functions p and

g such that the ratio

p) _ — (V- 5Y%) +1/GR)

() (N=XLix)+1/(3R)
satisfies |p(x)/q(x) — ORy(x)| < 1/(3R) for every x. Then the following sum of rational functions
agrees in sign with ANDg o ORy at all inputs x = (x1,...,xz) € ({—1, I}R)N: ;e:l p(xj)/q(x;) +R—
1= ‘;:1 p(x))q(x;)/q*(x;) + R — 1. Placing everything over the non-negative common denominator

Hﬂ-e:] ¢*(x;), it follows that the polynomial
S : 2
R=1)- [T @)+ Y pGiatxp)  TT  alx))
=1 j=1 k=1, R: k]

sign-represents ANDg o ORy. The degree of this polynomial is O(R). O

7 The threshold degree of Surjectivity: Lower bound

The key technical result established in this section is Theorem 3.1, restated here for the reader’s conve-
nience.

Theorem 3.1. Let R = N'/2. Then deg, ((AN Dxo ORN)SN) — Q(N'2/10g32 N).

By combining Theorems 5.19, 5.9, and 3.1, we obtain the desired lower bound on the threshold
degree of SURJ.

Corollary 7.1. For R=N'/2, deg, (SURJgry) = Q(N1/2/log5/2N).

In fact, combining Corollary 7.1 with Proposition 5.10 determines the threshold degree of SURJg »
up to logarithmic factors, for all settings of R and N.

Corollary 7.2 (Restatement of Theorem 1.1). For any constant ¢ < 1, if 1 <R < cN, then

deg, (SURJgw) =& (min(R,N1/2)> .
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Proof. If N'/2 <R < ¢N, let N' = ®(N) be such that N = N’ + R — (N’)!/2. Then Proposition 5.10
implies that deg, (SURJgy) > deg, (SURJ(N/)l/zN) = Q(N'/?), where the final equality holds by
Corollary 7.1.

If R < N'/2, then Proposition 5.11 implies that deg (SURJg ) > deg, (SURJg_ | (g_1)2) = Q(R),
where the final equality holds by Corollary 7.1. O

Proof of Theorem 3.1. Letd = N'/2 /(clog’/? N) for a sufficiently large constant ¢ to be chosen later. Let
¥ be the dual witness for ORy from Proposition 5.14 with T = N/log® N and § = 1/4. Then y has pure
high degree at least d. Fix any positive integer r, and define @: {—1,1}" — R as follows:

—1/2 ifw=(-1,-1,...,—1)
D, (w)=<1/2 itw=(1,1,...,1)
0 otherwise.

Observe that @, has pure high degree 1, and also ||®,||; = 1. We remark that the dual block
composition @, x Y is essentially the same dual witness constructed in [14] to show that (Eég(AN D,o
ORy) = Q(Nl/z) for € = 1—27" (see Inequality (7.3) below). This dual witness was also used in
subsequent work [9, 12,43].

We observe that @, x v has the following properties.

[Pyl =1. (7.1)

@, % y has pure high degree at least d . (7.2)

E(®,xy,AND, cORy) <27". (7.3)

(@5 W) (1) > % L(3/4). (7.4)

(@, xy) (y) >0forally € Iy, . (7.5)

There is some constant ¢3 > 0 such that W(®, x y, (AND, o ORN)SN) < 9-¢3v/Nlogh (7.6)

Justification for Properties (7.1)-(7.6). Equation (7.1) follows from Proposition 5.17 (see Equa-
tion (5.15)) and the fact that ||®,||; = ||w]||; = 1. Equation (7.2) follows from Proposition 5.17 (see
Equation (5.16)), and the fact that the pure high degree of ®, is at least 1, and the pure high degree of v is
at least d. Inequality (7.3) is an immediate consequence of [14, Theorem 1]. Inequality (7.4) is immediate
from the definition of dual block composition and the fact that y(1y) > 3/8 (see Inequality (5.11)).

Property (7.5) holds because (®,* y)(x) < 0 only if y(x;) <Oforalli=1,...,r, and y(x;) <0
implies that |x;| > 1 (see Inequality (5.11)). Hence, (@, x y) (x) < 0= |x| > r.

Finally, Property (7.6) is immediate from Lemma 5.18 (see Inequality (5.22)) by choosing c3 suffi-
ciently large.

Definitions of auxiliary functions v,. Fix any x € J{,%‘fv. We think of x as consisting of R blocks, each
of length N. Accordingly, denote x = (xi,...,xg), where each x; € {—1,1}".
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Let J = {i: x; = 1y}, and let r(x) = [J|. Enumerate the set J as J = {i}, i, ..., }. Since |x| <d,
r(x) > R —d. Define the function v,: ({1, I}N)R — R by

v (yl yR) _ (q)r(x) * l//) (yil yeen ’yir(x)) if Vi = X; for all i ¢ J
B 0 otherwise.

We observe that v, has the following properties.

[velli = 1. (1.7)

V, has pure high degree at least d . (7.8)

E (v;,ANDgo ORy) = E (¥, * ¥, AND,(,) 0 ORy) <270, (7.9)

Va(x) - (ANDg o ORy) (x) = (P * W) (Iey) > 1/2-(3/4)™ > 1/2-3/4)F. (7.10)
Vi(y) > Oforally € Hgd. (7.11)

W (vx, (ANDROORN)SN“‘) < g-esWNlog (7.12)

Justification for Properties (7.7)-(7.12). Equations (7.7) and (7.8) are immediate from Equations (7.1)
and (7.2) respectively.

We now derive Expression (7.9). The first equality holds by the following reasoning. Since x; # 1y
foralli¢J,z;=x; foralli ¢ J=— ANDgroORy(z) = (AN D,y © ORN) (Ziys- - - ,z,-r(x)). The inequality in
Expression (7.9) follows from Inequality (7.3).

Expression (7.10) is immediate from the definition of dual block composition and the fact that
sgn(y(1y)) > 0 (see Expression (5.11)). Property (7.11) is immediate from Property (7.5) and the fact
that 2d < R. Inequality (7.12) is immediate from Inequality (7.6), the definition of v,, and the fact that
x| <d.

Another intermediate dual witness. Let 7 = |Hzy| = Y4 (*V). Consider the dual witness n =
7 Leegezd Vo Let rmin = min, g e<ar(x) > R—d > R/2.
We observe that 1 has the following properties.

Inlh < 1. (7.13)

Inl[y > 12", (7.14)

N has pure high degree at least d . (7.15)
E(1,ANDg o ORy) < 27"min. (7.16)
Forally € 32 n(y) > (1/T)-1/2-(3/4)k. (7.17)
W(n,(ANDg o ORy)=N*?) < p-c3vNlog (7.18)
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Justification for Properties (7.13)-(7.18). To justify Inequality (7.13), observe that

el ¥ o L mbl=r ¥ L o)

yE{=L1}N YE{=LI}NV " xegeed xeHgdve{—1,1}RN

1
== ¥ Ivlhi=1,

xeﬂ{l%f,

where the final equality is an immediate consequence of Equation (7.7).
To justify Inequality (7.14), observe that

1
o)== Y v
ye{~1,1}RN yE{— LI} | yeq=d
1
> = Y Ol |- > Y O

ye{=1L,1}* xeJ =4 ye{—11}& xeH=:
&€ (vx,ANDgoORy) y€&(vx,ANDgoORy)

=z X Yy wol||-{] X Y o w0
x€0y  yE{=LI} xedCsl ye{—1,1}FV:
Y& (vy, ANDgoORy) yEE (v, ANDRoORy)
|
=7 Y (1-E(v:,ANDgoORy)) | = [ Y E(v,ANDgoORy)
xej{l%lg xeﬂ-[,%,g

1 e
== Y 1-2-E(v,,ANDgoORy) > 1—2'""mn,

xEﬂ'C,%,\‘f

where the final statement holds by Expression (7.9).

Equation (7.15) is immediate from Equation (7.8) and Fact 5.6.

Expressions (7.16) and (7.18) are respectively immediate from Expressions (7.9) and (7.12) and the
triangle inequality.

Expression (7.17) follows from Expressions (7.10) and (7.11).

Let £ :=n/||n||1. By the definition of {, and Equations (7.13)-(7.18), { has the following properties.

1€l=1. (7.19)

{ has pure high degree at least d . (7.20)

E (§,ANDgoORy) < 27 /min / (1 — 2 "min) < 21~ 7min (7.21)

w (C, (ANDg o ORN)SN“’) < 2aVNIoeN /() _p=rmin) < pl=csvNlogN (7.22)
For all x € Hz §(x) > (1/T)-1/2-(3/4)R. (7.23)
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Let s = (1/T)-1/2-(3/4)R denote the right hand side of Expression (7.23). Recalling that T =
Yi, (RIN) < (1+RN)?, and that d = N'/2/(clog>/? N) for a constant ¢ of our choosing, taking ¢ suffi-
ciently large ensures that

s>27RS5, (7.24)

The final dual witness. Let f = (ANDg o ORy)="". We now modify ¢ using Lemma 5.12 to zero out
the mass on the “bad sets” £({,ANDg o ORy) and W({, f), thereby constructing a threshold-degree dual
witness u for f. Specifically, let B="W({, f)UE(L,ANDg o ORy). By Expression (7.23), and the fact
that f(x) = 1 for all x € H5e, it holds that

BC{—1,1}RV\ 3(5d. (7.25)

Hence, for every x € B, we can invoke Lemma 5.12 with D = d to obtain a function ¢, having Proper-
ties (5.1)-(5.4). For every x € B, define Yeorr x := {(x) - ¢x. Our final dual witness u is

H = C_ Z Yeorr x - (7-26)

xeB

Analysis of y: A brief overview. Since the correction terms in the definition of u are specifically
designed to have pure high degree d and zero out all of the “bad” mass of {, all that remains in order to
show that u witnesses a degree d lower bound on the threshold degree of f is show that the correction
terms do not disturb the sign of any inputs in their support. To accomplish this, we start by observing
that the total ¢;-mass of all the correction objects is at most (W (, f) + E({,ANDgoORy)) -2¢ - (Rév).
Recalling that R = N'/2 and d = N'/2/(clog>/? N) for a constant ¢ of our choosing, by Properties (7.21)
and (7.22) we can set c¢ sufficiently large to ensure thatboth R—d — 1 >4R/5 and c34/NlogN — 1 > 4R/5.
Then

(W(,f)+E(,ANDgoORy))-2¢ - (Rflv > < 2RISRV < 2RSS < /2 (727)

where the final inequality holds by Property (7.24). Hence, for each x € fH,%d, mx) - fx) >E&(x)- flx)—
s/2 > s/2, where the final inequality holds by Property (7.23). That is, the correction terms do not disturb
the sign of any points in their support.

Analysis of p: Details. We need to prove that u satisfies the conditions of Theorem 5.3 with f =
(ANDg o ORy) =N+,

o (Pure high degree). That u has pure high degree at least d follows from Fact 5.6 and the fact that
{ and each Weorr,x have pure high degree at least d (Equations (7.20) and (5.3)).

e (Sign-agreement). To establish sign-agreement, we consider three cases:

— y € B. In this case 1(y) = {(y) — Weorry(¥) = §(¥) — § () = 0. Here, the first equality holds
because B C Hz¢ (see Equation (7.25)), and for each x € B\ {y}, the point y is not in the
support of Weorr x (as Equation (5.2) states that the support of Yeorr x is a subset of J{I%ﬁ U{x}).
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- y& (BUFY). In this case, u(y)- £(y) = {(y)- f(v) > 0. The first equality holds because y ¢
B, and since y & J{I%d, v is not in the support of any Weorrx for any x € B (see Equation (5.2)).

-yE€E 3{1%5. In this case,

H)=80) = Y Veorx(y) 2 E() —

XEB

Z Yeorr x (y)

x€B

>C(y) - Z | Weorrx|l1

x€B

> ¢(y) — (E(¢,ANDgoORy) +W (£, f))-27- <RL§V> >s5—5/2>0.  (7.28)

Here, the third to last inequality follows from the definition of Weorr x and Expression (5.4),
and the penultimate inequality follows by Expressions (7.23) and (7.27).

o (Appropriate support). The first case considered in the sign-agreement analysis above also
establishes the appropriate support condition, since it shows that p(x) = 0 for all x € B, and by
definition of B, Hzy ™ C B.

o (Non-triviality). The third case considered in the sign-agreement analysis also establishes non-
triviality, since g1 (x) > 0 for all x € Hz.

By Theorem 5.3, u witnesses the fact that for R = N'/2,
deg. ((ANDR o ORN)SN”) o) (N1/2/10g3/2N) '

For any ¢t > 0,
deg, ((ANDROORN)§’>

is clearly nondecreasing with N. Hence,

deg, ((AN Dro ORN+d)§N+") o) (N1/2/10g3/21v) .
Since d = o(N), setting N’ = N + d implies that

deg, ((ANDR o ORN,)SN’) e ((N')l/2 /1og3/2(N’)) ,

as desired. O

8 The large-error approximate degree of AC' is nearly linear

Theorem 8.1. For any constant § > 0, there is a function h: {—1,1}" — {—1,1} computed by an AC°
circuit of depth O(1/8) such that deg, (h) = Q(n'~%), for some € = 1 — 29",

Theorem 8.1 is a consequence of the following hardness amplification result, which shows how to
transform any function f that is hard to approximate by low-degree polynomials into a function F' that is
even harder to approximate, in terms of both the degree and the error that is achievable by polynomials of
said degree.
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Theorem 8.2. Fix constants k > 1,¢ > 0. Let f,: {—1,1}"1°¢"" — {11} be any (infinite family
of) functions satisfying (ié/gg (fn) > Q (nk/(k+1)) for some € =1 — 2-Q(/)
n. Then there is an explicitly given sequence of functions F,: {—1,1}"°¢ — {—1,1} such that
cIf\::gg (F) > Q (n(k+1)/(k+2)) for some e =1— P G I sufficiently large n. Moreover, if f; is
computed by polynomial-size circuits of depth A, then F, is computed by polynomial-size circuits of depth
at most A+ O(1).

and sufficiently large

c+0(1)n

Proof of Theorem 8.1 assuming Theorem 8.2. SURJy12  is a function on n = @(NlogN) input bits,
computed by a polynomial-size circuit of depth 3, and Corollary 7.1 implies that deg, (SURJy12 ) =
Q(N'/?). Applying Theorem 8.2 to f =SU RJy1/2 y with k = 1 yields a function F; on n-polylog(n) inputs
that is computed by a polynomial-size circuit of depth 3+ O(1) = O(1), and satisfies d’evge(Fl) > Q(n*?)
for some £ = 1 — 220", Applying Theorem 8.2 yet again, with f = F; and k = 2 yields a function F;
in AC? that is also defined on 7 - polylog(n) inputs, is computed by a polynomial-size circuit of depth
O(1), and satisfies (if:vgg(Fz) > Q(n?/*) for some £ = 1 — 2~

In general, for any constant & € (0,1), let k be a constant such that 1 — 8 <k/(k+1),i.e.,k>1/6—1.
Then iteratively applying Theorem 8.2 k — 1 times, starting with f = SURJy1.2 y, yields a function h

computed by an AC? circuit of depth O(k) = O(1/8), defined on n’ = nlog®® n = O(n) input bits, such
that deg, (h) = Q(n'~?) for some € = 1 — 2-2("*) Theorem 8.1 follows. O

Proof of Theorem 8.2. Theorem 5.19 implies that, in order to prove Theorem 8.2, it is sufficient to
identify a block-composed function G defined on poly(n) inputs that is computed by a polynomial-size

circuit of depth A4 O(1) such that for some ¢ = n - polylog(n), we have deg, (G=) > Q(nk+1)/(k+2))

_ (k+1)/(k+2)
forsome € =1—-2 (n )

F = GP™P,
To define G, we need the following lemma, which follows from the techniques of [2] (see [28] for an
exposition).

. Indeed, if we accomplish this, then Theorem 8.2 follows by setting

Lemma 8.3. There exists a Boolean circuit C,: {—1,1}" — {—1,1} with n inputs, depth 3, and size
O(n?) satisfying the following two conditions:

e C,(x) =1 for all x of Hamming weight at most n/3.
e C,(x) = —1 for all x of Hamming weight at least 2n/3.

We refer to the function computed by the circuit C of Lemma 8.3 as GAPMAJ, short for a gapped
majority function (such a function is sometimes also called an approximate majority function).® We
remark that while the circuit C from Lemma 8.3 is not explicitly constructed, explicit constructions of
ACY circuits satisfying the two bulleted conditions of Lemma 8.3 are known [49].

Definition of G. Let t = n!/(+2) 7 = yk+1)/(+2) 1 — 10logn, and m = n? *+2)_ Let N=t-Z-r-M,
where Z = zlog®z, and M = 10nlog“™* n. We define G: {—1,1} — {—1,1} to equal GAPMAJ; 0 f, 0

8In prior related work [9], GAPMAJ referred to the promise function that equals 1 for all inputs x of Hamming weight at
most n2/3, equals —1 for all inputs x of Hamming weight at least 2n/3, and is undefined otherwise. In contrast, we use GAPMAJ
to refer to any total function in AC that agrees with the partial function from [9] at all points in the partial function’s domain.
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AND, o ORy,. Here, f, denotes the function f on Z = zlog® z variables whose existence is assumed by
the hypothesis of the theorem.

We now begin the process of constructing a dual witness p showing that (ié/gg(GglonlogM”) =
Q (n*+1/+2)) for some € = 1 — 2= Q(nl )

For any appropriate constant ¢ > 0, let ¢’: {—1,1}? — R be a dual witness for the fact that dEgs (f2) >
C- K/t = €. ¥/ (k+2) .= g (for some constant C) as per Theorem 5.5. Then ¢ := ¢'/||¢||; has the
following properties.

ol =1. (8.1
¢ has pure high degree at least d . (8.2)
Y 0(x)-fu(x) > 18 for some &' = 2~d) (8.3)

xe{-1,1}%

Similar to the proof of Theorem 3.1, let y be the dual witness for ORy; from Proposition 5.14 with
M = 10nlog**n, T =m, and § = 1/4, and let

—-1/2 ifw=(-1,—-1,...,—1)
P, (w)=<¢1/2 iftw=(1,1,...,1)
0 otherwise.

We remind the reader that Equations (7.1)-(7.3) from the proof of Theorem 3.1 guarantee that @, y
has the following properties.
1,5 w]| = 1. (8.4)

®, x W has pure high degree at least that of y, which is D' := Q (m1/2> =Q <n1/(k+2)) . (8.9)

E(®,xy,AND,0ORy) <277 =1/n'". (8.6)

We now combine ¢ and @, x y to obtain an intermediate dual witness ¥, which will witness the fact
that deg, , ow) (f; ©AND, 0 ORy) = Q(d - \/m). The combining technique that we use is precisely the
one introduced by Sherstov [41, Theorem 6.1] to establish a direct-sum theorem for approximate degree.
Roughly speaking, [41, Theorem 6.1] showed that for any Boolean functions f and g, if degs, (f) > d
and cfevgl/n(g) > d', then cfe;géz (fog)=Q(d-d) for some §; ~ &. The y that we construct below is (a
normalized version of) the dual witness constructed in the proof of [41, Theorem 6.1] when applied with
outer function f; and inner function g = AND, o ORy,.

For a fixed even integer j € (d/2—2,d/2], let P; be the degree j univariate polynomial given by
Pj(a) = {: ((a—1), and define p;: {—1,1}* — R to be the unique multilinear polynomial such that
pj(x) = P;(|x]). We will need the following properties of p;.

e
The sum of the absolute values of the Fourier coefficients of p; is at most ;! < +J) . (8.7)
J
2 1 1.
For any ¢ € [1 —1/Z,1], it holds that pj(c,...,c) > 5]! >1. (8.8)
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Property (8.7) is precisely Lemma 3.1 (specifically, Property 3.2) of [41]. To see that Property (8.8)
holds, first observe that p;(x) > 0 for all x € {—1,1}%, owing to the fact that j is even. Second, by
the multilinearity of p;, the value of p;(c,...,c) is the expected value of p; under the distribution over
x € {—1,1}# in which each coordinate i of x is chosen independently from {—1,1} such that the expected
value of x; is ¢. Denoting this distribution as B, Pry.p, [x = 1z] > 1/2. Hence,

1
piles€) 2 Prlv=17]pj(17) > 5t (8.9)

~ x~B.

Let 8" =2-E(AND, 0o ORy;, ®, % y) <2-27"=2/n'" Fory € {—1,1}""M, define’:

! if (AND, 0 ORyy)(y) = sgn((®, x ¥)(y)) = +1
a(y)=4q1-28" if (AND,oORy)(y) =sgn((®,xy)(y)) = —1
—1 otherwise.

For an input x to f, o AND, o ORy,, write x = (x1,...,xz) with each x; € {—1,1}"". Define:
Y (x1,-xz) = pj(a(x),..., 0(xz)) - (9 Prxy) (x),

andlety=7v/|[7|:.
We observe that ¥ has the following properties.

17l =p;j(1-28",...,1-258") > 0. (8.10)
Y has pure high degree at least (d/2)-D'. (8.11)
myj+1
y j/(x)-(onANDroORM)(x)ij(...,1—25”,...)-<(1—26’)—2(6),/-(.n ))
xe{—T1)ZrM (1=6")" \j+1
(8.12)

Property (8.10) is precisely Claim 6.2 from [41]. Equation (8.11) is immediate from [41, Equation 6.7],
combined with the fact that @, x y has pure high degree at least D’ (Equation (8.5)) and ¢ has pure high
degree at least d (Equation (8.2)). Property (8.12) is precisely Claim 6.3 from [41].

Recall that we defined Yy = ¥ /||Y||1. Properties (8.10)-(8.12) imply that y satisfies the following
conditions:

7l =1. (8.13)
v has pure high degree at least (d/2)-D’. (8.14)
2(5//)j+1 ( n )
x)-(f,0AND, 0o ORy) (x) > (1 =28") — ——~4— - | .
i W0 =020 0 e
> (1 —25’—2*351) =179 (8.15)

90ur definition of o specializes the definition in [41, Page 39] to our setting: our definition and the definition in [41, Page
39] coincide owing to the fact that (as established in [14, Theorem 1]) (®,* y)(y) < 0 = (AND, 0 ORy) (y) < 0.
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In Property (8.15), the penultimate inequality holds because §” <2-27"=2/n'" and j > d/2 —2.
The final steps in the construction of . Next, define {: {—1,1}"4"M — R via:
C — ¢l * ’}/

For every x e W (C, Gglo”l"gcﬂ”), invoke Lemma 5.12 with D = C’ - n®*+t1)/(*+2) (for a sufficiently
small constant C’ to be chosen later) to obtain a function ¢, satisfying Conditions (5.1)-(5.4), and define
Veorrx := §(x) - ¢ . We define our final dual witness to be y = § — erw ( ¢ G§]0n10g6+4n) Weorr x -

Analysis of { and y. We observe that { has the following properties.

IElh=1. (8.16)
¢ has pure high degree at least that of ¥, which is at least D" := (d/2)-D'. (8.17)
§(x)- (GAPMAJ, 0 f,0 AND, 0 ORy) > 1 —2 ") (8.18)

xe{—1,1y7rM
W(C,GSlOﬂlOgCM ) <9 o(n* /2 10g ) . (8.19)

Justification for Properties (8.16)-(8.19). Equation (8.16) follows from Proposition 5.17 (see Equa-
tion (5.15)), and the facts that ||®;|| = 1 and ||y|| = 1 (see Equation (8.13)), and y has pure high degree at
least 1. Equation (8.17) follows from Proposition 5.17 (see Equation (5.16)), the fact that &, has pure
high degree 1, and the fact that y has pure high degree at least (d/2)- D’ (see Equation (8.14)). The
validity of Inequality (8.18) is established via a standard, but somewhat lengthy, analysis that we defer to
Section 8.1.

We justify Inequality (8.19) as follows. Denote an input x in {—1, 1 asx=(...,Xs,...) Where
i ranges over 1,...,t, s ranges over 1,...,Z, and each x;; € {—1,1}"™. Since p; is non-negative on all
inputs in [—1, I]Z (this follows from the same reasoning as in the proof of Property (8.8)),

}t~Z~r~M

E() = (@@ x e ) (x)- ([1V]]1) HP] (xi1)s - 0(xiz))

= (P *x¢p*P,xy) (x)-pj(...,1—-28",...)7" -I[—[pj(a(x,-’l),...,Ot(xivz))

i=1

S|Pk @ DY) (x) -

—.

pio(xin),. .-, a(x,»,z))‘

i=1

< (@02 y) ()] () (ﬁ’))

—~

< (@ @5 ) (x)] - 20V

< (@ * ¢ x Dy 5 ) (x)] - 200 Toen) (8.20)
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Here, the second equality holds by Equation (8.10), the first inequality holds by Property (8.8), and
the second inequality follows from Property (8.7) and the fact that |o¢(x; )| < 1foralli=1,...,t and
s=1,...,Z.
Now invoke Lemma 5.18 (and associativity of dual block composition, see Equation (5.17)) to
conclude that
W ((d),*(p*d)r)*y/, (GAPMAJ; o f- oANDroORM)SIO”IOgM") <

2~ Qnlog’n/vm) < =@/ og’n) (8.21)
Combining Inequalities (8.20) and (8.21), we conclude that

W (C ,(GAPMAJ; 0 f,0 AND, o ORM)S“)"‘Og‘“”) < 2@V E0g?n) H0(drlogn)
(n(k+1)/(1<+2) 10g2n) '20(,,(k+1)/(k+2> logn)

<27
< 9= Q(nk /) log?n)

)

where the final inequality holds for large enough n.
Finally, we observe the following properties of L.

llly < 1270, (8.22)
u has pure high degree at least min(D”,D) = Q (n(k“)/ (k+2)) . (8.23)
1(x)-Gx) > 1—27d) — | _p=Q(h/2). (8.24)

xe{—1,1yrzrm
p(x) = 0 for all x € F¢J0loe " (8.25)

Justification for Properties (8.22)-(8.25). For Inequality (8.22), observe that

el < 116+ )y [Weorrxll1
xEW(E,GS10nloge T4 ny
c t-Z-r-M
<14W Gg10nlog+4n oD
<1+W(L, ) ;

< 1+2_w(n(k+1)/(k+2) logn)
where the penultimate inequality holds by Expressions (5.4) and (8.16), and the final inequality holds by
Inequality (8.19).

Equation (8.23) follows from Fact 5.6, Equation (7.20), and the fact that each term Wcorr « has pure
high degree at least D (Equation (5.3)).
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Expression (8.24) holds because

p(x) -G = ) L(x)Gl) - )y [ Weorr.xll1

xe{=1,1}rzrM xe{—1,1}r#rM xGW(C.GSlOnlogC+4n)

>1— 2—Q(ld) _ 2—(1)(n(k+1)/(k+2)) >1— Z—Q(td)

- 9

where the penultimate inequality invokes Expressions (5.4) and (8.19).

Expression (8.25) holds because for any x € 3, Zl.(;',’;,?g(%", we have [(x) = §(x) — Yeorrx(x) =
{(x) — (x) = 0. Here, the first equality holds because Property (5.2) ensures that, for any x’ €
W <C , G§10”103C+4”) such that x # x’, we have Yeore v (x) = 0.

It is immediate from Properties (8.22)-(8.25) that u satisfies the conditions required by Theorem 5.5
to witness the fact that (Egg(GgO"l"gM”) = Q(n*+D/(+2)) for some € = 1 — 2- Q) O

8.1 Justification for Expression (8.18)

All notation in this section the same as in the proof of Theorem 8.2. Let F = f, o AND, o ORy;. Recall
that { = ®, x ¥, where ¥ has the following properties.

vl =1. (8.26)
v has pure high degree at least (d/2)-D' > 1. (8.27)
Y0)-F(y) > e:=1-279), (8.28)
ye{—1,1}2rM
Equation (8.27) implies that
Y = X hol=1/2 (8.29)
y: sgn(y(y))=1 y: sgn(y(y)=-1

Let £ (%F) = Zy: ¥(y)>0 and F(y)<0 |’Y(y)‘ and E_, (%F) = Zy: ¥(y)<0 and F(y)>0 "}/(Y) ’ Combining Expres-
sions (8.28) and (8.29) implies that E; (y,F) and E_(y,F) < 2%,

Let 7 be the product distribution on ({—1,1}%")" given by 7(x1,...,x) = [T, |¥(xi)|. Given a
string b = (by,...,b;) € {—1,1}, let 1, be the distribution over x € {—1,1}#"M equal to T conditioned
on (...,sgn(x;),...,) =b. Equation (8.29) implies that when x = (x1,...,x;) is drawn from 7, the string
(...,sgn(y(x;),...) is uniformly distributed in {—1,1}.

Moreover, for any given b € {—1, 1}, the following two random variables are identically distributed:

e The string (..., F(x;),...) when one chooses (...,x;,...) from the conditional distribution 7.

e The string (..., 0;b;,...), where 6 € {—1,1}' is a random string whose ith bit independently takes
on value —1 with probability 2,z |w(x)| <279,
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Thus,

¢(x)-GAPMAJ(...,F(xi),...)
)CE{*Ll}['Z'r'M
=2 Y ®i(b) -Eeeg [GAPMAJ(.... F(x),...)]
be{-1,1}

=2 <;EML [GAPMAJ(...,F(x;),...)] — %IE)M,I, [GAPMAJ(... ,F(xz-),--.))

1 1 ) i
:E]E(S(I)[GAPMAJt(él(l)’76[(1))]*E]E(s(fl)[GAPMAJI(*(SI( 1)7---,761( l))]7

where for j € {—1,1}, §¢) € {—1,1} is a random string whose ith coordinate takes value —1 with
probability 2¥cp, [W(x)| < 27,

Note that Eg [GAPMAJ,(S](]), I 5,(1>)] > 1 —2-20d): gince each bit of §1V) equals 1 with prob-
ability 1 — 2@ the probability that more than t/3 of the coordinates of 8 are —1 is at most
(1) -2 = 270D Similarly, Egy[GAPMA, (—8{",...,—8{"")] < =1 4+27%). We con-
clude that the correlation of { with GAPMAJ, o F is at least 1 — 204 as claimed.

9 Algorithmic and complexity-theoretic applications

9.1 Complexity measures

Throughout this section, for a function F: {—1,1}" x {—1,1}" — {—1,1}, we also view F as a 2" x 2"
matrix whose (x,y)’th entry is given by F(x,y).

Approximate rank. For a matrix F € {—1,1}¥*V the e-approximate rank of F, denoted ranke(F), is

the least rank of a matrix A € RV*N such that |A;; — F;;| < € for all (i, j) € [N] x [N]. Approximate rank
is a fundamental notion in learning theory and communication complexity. Meanwhile, the sign-rank of
F is the least rank of a matrix A € R¥*N such that |A;; — F;;| < 1 for all (i, j) € [N] x [N]. Clearly, for
any F, the exact (not just approximate) rank of F' is at most V.

Discrepancy. The discrepancy of F, denoted disc(F'), is a combinatorial measure of the complexity of F
that roughly captures F’s correlation with combinatorial rectangles (small discrepancy corresponds to
high complexity).

Definition 9.1. A combinatorial rectangle of X x Y is a set of the form A x B withA C X and B C Y. For
a distribution u over X x Y, the discrepancy of F with respect to t is defined to be the maximum over all
rectangles R of the bias of F on R. That is:

discy (F) = max

Y u(xy)F(x,y)

(x.y)€ER

The discrepancy of F, disc(F) is defined to be min, disc (F).
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It is known that for any function F: {—1,1}" x {—1,1}" — {—1, 1}, the discrepancy of F is at least
2-0()_ Discrepancy plays a central role in communication complexity because it characterizes PP,
the class of communication problems efficiently solvable by small-bias protocols [26]. Discrepancy is
also important in circuit complexity, where it lower bounds the size of Majority-of-Threshold circuits
computing F [23,24,34,39]. Finally, discrepancy is known to be equivalent (up to a constant factor) to
margin complexity [32], which is itself a fundamental notion in learning theory.

Threshold weight. The weight of an n-variate polynomial p is the sum of the absolute value of its coeffi-
cients. The length of p is the number of non-zero coefficients of p. The threshold weight (respectively,
length) of F: {—1,1} x {—1,1}¥ — {—1,1} is the least weight (respectively, length) of a polynomial
p with integer coefficients such that p(x,y) - F(x,y) > 0 for all (x,y) € {—1,1}" x {—1,1}" (note that
no restriction is placed on the degree of p). The threshold weight of F is always at most 2" since
Parseval’s inequality implies that every Boolean function is always exactly computed by a polynomial of
weight 2009

9.2 Nearly optimal bounds on discrepancy, threshold weight, and more

Via well-known techniques, we now translate our approximate-degree lower bounds into approximate-
rank, discrepancy, and threshold-weight bounds in a black-box manner.
We start with the following theorem (from which Theorem 1.3 from Section 1.1.2 follows).

Theorem 9.2. For any constant § > 0, there is an AC° function F: {—1,1}" x {—1,1}" — {—1,1} with
discrepancy at most exp(—Q(n'~%)) and e-approximate rank exp(Q(n'~?)) for some € = 1 — 2-Q'?),
Proof. Let f be the AC? function with e-approximate degree at least n'!~% for some € = 1 — 2-Qn'0)
whose existence is guaranteed by Theorem 8.1. The pattern matrix method [40, Theorem 8.1] implies
that for some C = O(1), the function F: {—1,1}" x {—1,1}" — {—~1,1} given by

F(x,y) :f(...,\/Jc-:l (x,-,j/\y,‘yj)...)

satisfies rankg (F) > exp(Q(n'~9)), for some &’ = 1 — 2-20""")  Moreover, by [40, Theorem 7.3] F
also satisfies disc(F) < exp(—Q(n'~9)).1 Moreover, if f is computed by a Boolean circuit of depth k
and polynomial size, then F is computed by a Boolean circuit of polynomial size and depth k + 2. This
completes the proof of the theorem for approximate rank and discrepancy.

Meanwhile, a result of Krause [29] implies that the following function " on 3n inputs has threshold
weight 2201°): F/(x,y,2) = f(...,(xi AZ) V (i Azi)s...) is at least 22(1"°) 11 Clearly, since f is
computed by a Boolean circuit of depth k and polynomial size, F’ is computed by a Boolean circuit of
polynomial size and depth k + 2. 0

10140, Theorem 7.3] is actually expressed in terms of the degree d threshold weight of £, rather than the e-approximate
degree of f, but our lower bound on the e-approximate degree of f is easily seen to imply the lower bound on the degree d
threshold weight of f required to apply [40, Theorem 7.3] (see, e. g., [14, Lemma 20]).

1 A5 in Footnote 10, Krause’s result is expressed in terms of the degree d threshold weight of f, rather than the e-approximate
degree of f, but our lower bound on the e-approximate degree of f is easily seen to imply the lower bound on the degree d
threshold weight of f required to apply Krause’s result (see, e. g., [14, Lemma 20]).
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Via established applications of discrepancy, we conclude from Theorem 9.2 that for any constant
8 > 0, there is an AC? function F with margin complexity exp(Q(n'~?)) [32], Majority-of-Threshold
circuit size exp(Q(n' %)) [34,39], and PP communication complexity Q(n'~?) [26]. These bounds
are all nearly tight, in the sense that any function has margin complexity 20" is computed by Majority-
of-Threshold circuits of size 2°("), and has PP® communication complexity at most 7.

9.3 Lower bounds for sign-rank and threshold length
9.3.1 Threshold length

Theorem 9.3. There is a function F: {—1,1}" — {—1,1} computed by a polynomial-size circuit of
depth 3 and logarithmic bottom fan-in such that the threshold length of F is exp(Q(n'/?)).

Proof. Recall (Corollary 7.1) that for n = Nlog(N'/?), we have SURJyiay: {=1,1}" = {—1,1}, and
deg, (SURJy112 ) = Q(n'/?). Moreover, SURJ 1 /2y is computed by a quadratic-size circuit of depth 3,
with an AND gate at the top, and logarithmic bottom fan-in.

Krause and Pudldk showed that if deg, (f) > d, then the function F: {—1,1}*" — {—1,1} defined
via F(x,y,2) == f(...,(xi AZ:) V (yi Azi),...) has threshold length 2%, If f = SURJ, then F is clearly
computed by a polynomial-size circuit of depth 5, with an AND where gates at the bottom two layers
(just above the inputs) have fan-in 2, and gates at the third-to-bottom layer have fan-in O(logn). Hence,
each gate at the third layer from the bottom computes a function of just O(logn) inputs, and any such
function can be computed by a polynomial-size DNF and logarithmic width. Replacing each gate at the
third-to-bottom layer with an equivalent polynomial-size DNF of polynomial size and logarithmic width,
and collapsing the two adjacent layers of OR gates, yields a depth-three circuit of logarithmic bottom
fan-in. O

9.3.2 Sign-rank

Recall that Corollary 1.2 from the Introduction asserted the existence of an AC? function
F(X,y) : {_17 l}n X {_17 l}n — {_17 1}

such that the sign-rank of the matrix [F(x,y)] is exp(Q(n'/?)). We prove Corollary 1.2 below.
Via established applications of sign-rank, we conclude as a consequence that there is a communication
problem in AC? with UPP* communication complexity Q(nl/ 2) [36], and such that all Threshold-of-

Majority circuits computing the function have size 20'?) [22].

Proof of Corollary 1.2. Suppose that deg, (f) > d. In order to establish sign-rank lower bounds for a
certain matrix A derived from f, Razborov and Sherstov [38] extended a lemma of Forster [21] to show
that it is enough to construct a dual witness u for the fact that deg  (f) > d that additionally satisfies a
smoothness condition. Specifically, to show that the sign-rank of A is exp(Q(d)), it suffices to show that
there is a threshold degree dual witness u for f satisfying p(x) = exp(—O(d)) for all but an exp (—O(d))
fraction of inputs in x € {—1,1}". Formally, we have the following theorem, which is implicit in [38]
(the statement here is taken from [15, Theorem 4.1]).
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Theorem 9.4 (Implicit in [38, Theorem 1.1]). Let h: {—1,1}" — {—1,1} be a Boolean function, and
suppose there exists a function T: {—1,1}" — {—1,1} of pure high degree at least d such that T(x)-h(x) >
0 for all x € {—1,1}", and ||t||; = 1. Moreover, suppose that T(x) >27.27" for all but a 2~
fraction of inputs x € {—1,1}". Then there exists a constant C (depending only on c) such that if
F(x,y) =h(..., /\]C-:1 (xij V' Yij),--.), then the matrix [F (x,y)]yy has sign-rank exp(Q(d)).

Let R = N'/2, and assume R + 1 is a power of 2. Letting n = Nlog(R+1), recall dSURJg v is a
function on n bits, where any x € {—1,1}" is interpreted as specifying a list of N numbers from [R].
Here, 0 denotes a “dummy item” that is ignored by dSURJ. We assume without loss of generality in this
section that:

The dummy element is represented by the string 1jog(g41) - ©.1)

This ensures that strings x € {—1,1}" that encode mostly dummy items have low Hamming weight.
Recall that within the proof of Theorem 1.1 and Corollary 7.1, we proved that deg, (dSURJg 5) > d

for some d = Q(N 1/2 / 1og3/ N ), via a two-step process. First, we borrowed a result (Theorem 5.19)

from our prior work [18], which showed that for any range size R, deg, (dSURJg ) is equivalent to

deg, ((AN Dro ORN)SN ) Second, we constructed a dual witness i : J{ﬁg — R showing that the latter

quantity is at least d.

Unfortunately, the construction of u is not sufficient to apply Theorem 9.4 to dSURJg v, for two
reasons. First, to apply Theorem 9.4 to dSURJg x, we need to give a smooth dual witness for dASURJg v
itself, rather than for (ANDg o ORN)SN. Note that dSURJg v is defined over the domain {—1,1}" where
n=Nlog(R+ 1), while (ANDg o ORy)=" is defined over the domain HyR - Second, the dual witness
u for (ANDgo ORN)SN constructed in the proof of Corollary 7.1 is not smooth in the sense required
by Razborov and Sherstov, as it is only “large” on inputs of Hamming weight at most d (see the first
paragraph of Section 3.2 for further discussion of this point).

We will address both of the above issues as follows. First, we will show how to turn u into a dual
witness 6 for the fact that deg, (dSURJg ) > d, such that & inherits the “largeness” property of u
on inputs of Hamming weight at most d. Second, we transform & into a dual witness 7 for the fact
that deg, (dSURJR’N oAND, > o PARITYlOgsn) > d, such that 7 satisfies the smoothness condition

log“n
required to apply Theorem 9.4.

Construction and analysis of 6. In the proof of Theorem 3.1, we constructed a dual witness u for
F = ANDg o ORy satisfying the following conditions.

p(x)-F(x) >0forallx € {—1,1}*N. (9.2)
u(x) = 0 for all x € HzY. 9.3)

U has pure high degree at least d . 9.4)
p(x) > 27 1R for all x € F52. (9.5)

W (x) has £;-norm at most 2. (9.6)
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Expressions (9.2)-(9.4) are explicitly established in the proof of Theorem 3.1 (specifically, the part
entitled “Analysis of (). Expression (9.5) is immediate from the penultimate inequality in Expres-
sion (7.28). Equation (9.6) holds because we defined ut = { — ¥, 3 Weorrx (Expression (7.26)), and
hence

RN
Iy <160+ X Vel < 14 (B(£ ANDRo OR) + () 20 (%)) <2
x€B

Defining u’ = p/||it]|; yields a function that also satisfies Equations (9.2)-(9.4), and such that:

' (x) > 27R for all x € H54. 9.7)
' (x) has ¢;-norm 1. (9.8)

Let Z denote the subset of ([N]o)" defined as follows: Z := {z € ([N]o)*: z1 +--- +zz < N}. Define
G(z1,...,2r): Z—{—1,1} toequal —1 ifand only if z; > 1 foralli=1,...,R.
We will now turn ¢’ (which is defined over domain {—1,1}"¥) into a function over domain 2.

Define
G(Zlv"'7ZR): Z ‘u/(x>.

x=(x1,.r)€({—1,13¥)R: x| =z for all i

We claim that o has the following properties.

6(z)-G(z) > O forall z € 2. (9.9)
Y lo(x)|=1. 9.10)
Z€Z
deg(q) <d =) 0(z)-q(z) =0. (9.11)
Z€Z
R
o(z) >2 ®/*forallz € Zsuchthat ¥ z; <d. (9.12)

i=1
Expression (9.9) is immediate from Expression (9.2). Equation (9.10) is immediate from Equa-
tions (9.8) and (9.2), and the fact that F (x) = F(x') if |x;| = |x}| fori = 1,...,R. Equation (9.11) holds
because

Y o(x)q(zx) = Y 1 (x)-q(|xil,. .., lxx|) =0,
€% x=(x1,... xR) E{ = L,1}RN
where the last equality holds because g(|x1|,...,|xg]) is a polynomial over ({—1,1}" )R of degree at most

deg(q). Expression (9.12) is immediate from Expression (9.7).

Finally, we are in a position to define our desired dual witness 6: {—1,1}" — R, which will witness
the fact that deg, (dSURJg y) > d/logR. For an x € {—1,1}" interpreted as a sequence (si,...,sy) in
[R]Y, let z;(x) denote |{j: s; = i}|, and let z(x) = (z1(x),...,2r(x)) € 2. Foraz* € Z,let N(z*) = [{x €
{=1,1}": z(x) = z*}|. Define 6: {—1,1}" — R via:

6(x) = -o(z(x)). (9.13)
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We observe that 6 has the following properties.

6(x)-dSURJ(x) > 0 for all x € {—1,1}". (9.14)
6(x) has ¢;-norm 1. (9.15)

6(x) >27RB forall x e H4. (9.16)

6(x) has pure high degree at least d/logR. 9.17)

Expression (9.14) follows from Expression (9.9) and the definition of 6. Equation (9.15) is immediate
from the definition of 6 and Equation (9.10). To see that Expression (9.16) holds, observe that if x € 9—(,%" ,
then Equation (9.1) implies that Y& | z;(x) < d. Hence, Expression (9.12) implies that ¢ (z(x)) > 2%/4.
Moreover, for any x € H5%, N(z(x)) < (}) (this is because for any x,x', if z(x) = z(x'), then [x| = |¥|,
so N(z(x)) < (‘Z‘) < (4)). Combining these two inequalities with the definition of & (Equation (9.13))

yields that 6 (x) > 2-R/4. (3)71 >27R/3,

Equation (9.17) follows from Proposition 9.5 below, combined with Equation (9.11).

Proposition 9.5. Let 6: : Z — R satisfy Equation (9.11), and let 6 be as per Equation (9.13). Then &
has pure high degree at least d /1ogR.

Proposition 9.5 is essentially a dual formulation of an important lemma of Ambainis [4], as we now
explain.

Lemma 9.6 (Ambainis [4]). Let n = Nlog(R+1). Let p: {—1,1}" — {—1,1} be any polynomial of
degree at most d. Then there is a polynomial q: [R]](;’ — R of degree at most dlogR such that for all
€2, q(7) =E,. 7(x)=z* [p(x)].

Proposition 9.5 follows from Lemma 9.6 by the following reasoning. If p: {—1,1}* — {—1,1} is
polynomial of degree at most d/logR, then

6(x)-p(x) =Y 0(z)-4(z) =0, (9.18)

xe{-1,1}" €2
where the polynomial ¢ is as in Lemma 9.6, and the second equality holds by Equation (9.11).

Construction and analysis of 7. Now that we have constructed a dual witness 6 for the high threshold
degree of dSURJ (captured by Equations (9.14), (9.15), and (9.17)), that additionally satisfies the extra
condition of “largeness on low-Hamming-weight inputs” (Equation (9.16)), we can turn to constructing
a dual witness for dSURJ o AN Dlogz 2 © PARITYIOgs , that satisfies the smoothness condition needed by
Razborov’s and Sherstov’s sign-rank analysis.

Specifically, let a = log? n, and define y: {—1,1}* — R via:

120t x =1,
w(x) = {1/(2 (2% —1)) otherwise.
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Clearly, y has pure high degree at least 1, has ¢;-norm 1, and y(x)-AND,(x) >0 forall x € {—1,1}.
Consider the dual witness { = 6 x w. Then { has the following properties:

¢ has ¢y-norm 1. (9.19)
{ has pure high degree at least d/logR. (9.20)
£(x)- (dSURJ o ANDlogzn> (x) > O forall x € {—1,1}". 9.21)

Here, Equation (9.19) follows from Equation (9.15), the fact that y has ¢;-norm 1, and Property (5.15).
Equation (9.20) follows from Equation (9.17), Equation (5.16), and the fact that y has pure high degree
at least 1. Expression (9.21) follows from the definition of dual block composition, Expression (9.14),
and the fact that y(x) - AND,(x) > 0 forall x € {—1,1}%.

Let S be the set of all inputs x = (x,...,x,) € ({—1,1}%)" such that fewer than d of the x;’s are equal
to —1,. By Expression (9.16) and the definition of dual block composition,

For any input x € S, [ (x)] > 27R/3. (20 — 1) > 2R3 .p=an, (9.22)
Moreover,
Pr [x¢gS]<27. <”> < p~Qdlogn) < 7—QR) (9.23)
x~({=1,1}9)" d

Finally, letting £ = log®n, let n: {—1,1} — R be defined by n(x) = 2~¢- PARITY/(x). Observe
that 1 has ¢;-norm 1, has pure high degree ¢, and sgn(n(x)) = sgn(PARITY(x)) for all x € {—1,1}".
Then Equation (5.15) implies that 7 := { %1 has ¢;-norm 1, Equation (5.16) implies that T has pure high
degree at least (d/logR) - £ > R, and it follows from Equations (9.22) and (9.23) that

Pr ,
(1))
Hence, we can apply Theorem 9.4 to the function # = dSURJ o AN Dlogzn o PARITYlogsn,

defined on O(n) variables, to obtain an AC? function F (x,y) that is also defined on O(n) variables, such
that [F (x,y)].., has sign-rank exp(Q(n'/?)). O

[|7(x)] < 27R/3.p7tan) < 2=QUR) (9.24)

which is

9.4 Secret sharing schemes

Bogdanov et al. [7] observed that for any f: {—1,1}" — {—1,1} and integer d > 0, any dual polynomial
u for the fact that deg, (f) > d leads to a scheme for sharing a single secret bit b € {—1,1} among n
parties as follows. Decompose ( as i — (i, where (1 and y_ are non-negative functions with ||u||; =

|tto||1 = 1/2. Then in order to split b among n parties, one draws an input x = (xj,...,x,) € {—1,1}"
from the distribution 2 - 1, and gives bit x; to the ith party. In order to reconstruct b, one applies f to
(.)C] goes ,Xn).

Because u is e-correlated with f, the probability of correct reconstruction if the bit is chosen at
random is at least (1 + ¢€)/2 (and the the reconstruction advantage, defined to equal Pry.y, [f(x) =
1] =Pryoy [f(x) = 1], is at least €). The fact that u has pure high degree at least 4 means that any subset
of shares of size less than d provides no information about the secret bit 5. Hence, an immediate corollary
of Theorem 8.1 is the following.
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Corollary 9.7. For any arbitrarily small constant & > 0, there is a secret sharing scheme that shares a
single bit b among n parties by assigning a bit x; to each party i. The scheme has the following properties.

1. The reconstruction procedure is computed by an AC° circuit.

. . _ 1-6
2. The reconstruction advantage is at least 1 —2~2""°),

3. Any subset of shares of size less than d = Q(n1_5) provides no information about the secret bit b.

The best previous results could only guarantee security against subsets of shares of size d = G)(nl/ 2),
or could only guarantee reconstruction advantage bounded away from 1 [7,18]. Cheng et al. [19] recently
considered a relaxed notion of security, where even very small subsets of shares are allowed to provide
(a bounded amount of) information about the secret bit . Under this relaxed notion of security, they
achieved perfect reconstruction and security against subsets of size Q(n).

Acknowledgments. The authors are grateful to Robin Kothari, Nikhil Mande, Jonathan Ullman, and the
anonymous reviewers for valuable comments earlier versions of this manuscript.
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