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hardness of perfectly-satisfiable instances. This limitation was addressed by O’Donnell and
Wu, and subsequently generalized by Huang, to show the threshold result that predicates
strictly containing Parity of width at least three are approximation resistant also for perfectly-
satisfiable instances, assuming the d-to-1 Conjecture.
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reducing from SMOOTH LABEL COVER—the dependency on projection degrees for noise
introduction. Tools in hand, we prove the same approximation-resistance result for predicates
of width at least four, subject only to P 6= NP.

1 Introduction

We study the approximation limits of NP-hard Constraint Satisfaction Problems (CSPs). A canonical
example being MAX-3SAT which in the CSP framework can be denoted as MAX-CSP+(3OR).1 In
MAX-3SAT, we are given Boolean variables x1, . . . ,xn and clauses of the form “a∨b∨ c,” where each
literal a,b, and c is either a variable xi or its negation; a solution to an instance is an assignment to the
variables, the (optimal) value of a solution is the number of clauses it satisfies, and the value of an instance
is the maximum value over all solutions. In the CSP framework, we substitute the value “true” for 1 and
“false” for 0. In greater generality, the Boolean problem MAX-CSP+(P) is defined by specifying the
width-m Boolean predicate P⊆ {0,1}m applied to the set of m literals instead of 3OR.

It is known that 3SAT is NP-hard to solve exactly and we turn our attention to efficient approximations.
We say that a solution is a c-approximation if its value is at least c times the optimal value of an instance.
In particular, for MAX-3SAT, choosing a random assignment yields a 7/8-approximation in expectation
and unfortunately this is essentially the best efficient approximation of the problem as MAX-3SAT is
NP-hard to approximate better than 7/8+ ε for every ε > 0 [11]. In fact, even if the instance is perfectly
satisfiable, i. e., positive instances can have all clauses satisfied, it is NP-hard to satisfy more than a
fraction 7/8+ ε .

When a random assignment to an almost-satisfiable instance essentially achieves the best polynomial-
time approximation factor assuming P 6= NP, we say that a predicate is approximation resistant. For
simplicity, our treatise work under the assumption P 6= NP. A benefit of showing that a predicate
is approximation resistant is that it establishes the optimal polynomial-time approximation factor of
the predicate up to lower-order terms. In particular, this quantity is called the random assignment
threshold and equals 2−m|P| where m is the width of the predicate P and |P| is the number of assignments
x ∈ {0,1}m which satisfies the predicate. The celebrated work by Håstad [11] demonstrated that a number
of well-studied predicates are approximation resistant and the techniques thereof have been the starting
point of a long line of strong inapproximability results. Most proofs showing the approximation resistance
of a predicate P in fact establishes something stronger: that the predicate is hereditarily approximation
resistant or even useless, either property implying that every predicate Q ⊇ P is also approximation
resistant. In fact, recent developments show that there are hereditarily approximation-resistant predicates
accepting very few assignments and in particular these predicates are known to be contained in “most”
predicates, formally implying that the fraction of approximation-resistant predicates of a particular width
m approaches one as m goes to infinity [12].

Of particular interest to us is the predicate Odd Parity defined by (a1, . . . ,am) ∈ P if the number of
ai = 1 is odd, and the predicate Even Parity is defined analogously. Håstad showed that (either) Parity is
hereditarily approximation resistant, meaning that not only is Parity approximation resistant, but so is

1The definition of MAX-CSP is at times ambiguous and we have chosen to add a superscripted plus to signify that constraints
may involve negations of variables or more general operations for larger domains. As an example, if NEQ denotes the binary
Boolean not-equal predicate, then MAX-CSP(NEQ) equals MAX-CUT while MAX-CSP+(NEQ) equals MAX-3LIN-2.

THEORY OF COMPUTING, Volume 9 (23), 2013, pp. 703–757 704

http://dx.doi.org/10.4086/toc


CIRCUMVENTING d-TO-1 FOR PREDICATES CONTAINING PARITY

any predicate Q⊆ {0,1}m containing Parity, whereby containing, we mean in the set sense. However, in
comparison to for instance MAX-3SAT, this result only holds with respect to almost satisfiable instances.
Formally, letting Q be an arbitrary predicate containing Parity, for any η ,ε > 0, given a MAX-CSP+(Q)
instance with value at least 1−η , it is NP-hard to find a solution with value at least 2−m|Q|+ ε .

For Parity, the use of almost-satisfiable instances is necessary: perfectly-satisfiable instances can
via Gaussian elimination be solved in polynomial time, whereas almost-satisfiable instances are hard
to approximate within 1/2 + ε . It is not immediately clear whether other approximation-resistant
predicates containing Parity should be easy or hard for satisfiable instances, and indeed 3SAT is as hard
to approximate for almost-satisfiable as it is for perfectly-satisfiable instances.

Assuming Khot’s d-to-1 Conjecture [17], this question was settled by O’Donnell and Wu [22] for
m = 3 and later generalized to m≥ 3 by Huang [14]. They showed the remarkable threshold result that
any predicate strictly containing Parity is approximation resistant also for perfectly-satisfiable instances.
More specifically, the width-three case can on account of symmetry be reduced to showing the hereditary
approximation resistance of the “Not Two” predicate (NTW ), defined as accepting all triples of bits if
they are all zeroes or have odd parity, i. e., does not contain two ones.

The result of O’Donnell and Wu follows from the construction of a Probabilistically Checkable
Proof (PCP) reducing from an outer verifier to MAX-CSP+(NTW ). The outer verifier may be taken as a
black-box (parametrized) CSP called LABEL COVER. In LABEL COVER, one is given a bipartite graph
G=(U∪V,E), a “small” label set K, a “large” label set L, and for each edge e∈E an associated projection
πe : L→ K. Solutions assign each vertex u ∈U a label λ (u) from K and each vertex v ∈V a label λ (v)
from L, and the value of a solution is the fraction of edges {u,v} ∈ E for which λ (u) = π{u,v}(λ (v)).
One can show that it is NP-hard for every εLC > 0 to distinguish whether a LABEL COVER instance has
value 1 (the completeness) or value at most εLC (the soundness) for sufficiently large label sets K and L
depending on εLC.

Reductions from LABEL COVER are today standard in hardness of approximation. For Boolean
constraints, such proofs typically involve semantically replacing λ (u) and λ (v) with 22|K| and 22|L| Boolean
variables, respectively. These variables are respectively viewed as functions f u : {−1,1}K → {−1,1}
and gv : {−1,1}L→{−1,1}. The intention, for positive instances, is to set these functions to dictators.
That is, setting f u(x) = xλ (u) and gv(y) = yλ (v). For negative instances, there are however no guarantees
that the functions are set according to this coding scheme. Reducing to a MAX-CSP+(P) instance, and
viewing P as the indicator of its set, points of such functions are passed as arguments to P. The value of
an edge {u,v} in the LABEL COVER instance is thereby reduced to, for some integer T , to the value of
the expectation

E(x(1),...,x(T ),y(T+1),...,y(m))∼T

[
P
(

f u(x(1)), . . . , f u(x(T )),gv(y(T+1)), . . . ,gv(y(m))
)]

, (1.1)

where the arguments are chosen according to a test distribution T. Equation (1.1) is the starting point for
Fourier analysis of PCPs. For approximation resistance, this involves first taking the Fourier expansion of
P and proceeding to bounds terms of the forms E[∏ f u], E[∏gv], and/or E[∏ f u

∏gv]. For work most
similar to this treatise, T is typically one, rendering the first kind of term(s) trivial to bound while terms
of the third kind become E[ f u

∏gv]. Finally, a central parameter to this work is the (maximum) degree
of projections, d = d(εLC) = maxe∈E maxi∈K |π−1

e (i)|. That is, the greatest number of labels from the
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large label set which share projections. For present NP-hard constructions of LABEL COVER, d grows
polynomially with ε

−1
LC and one would like to avoid bounds depending on both εLC and d.

The construction by O’Donnell and Wu is similar to that of Håstad for MAX-3-LIN-2, i. e., Even
Parity on three bits. Working with almost-satisfiable instances, Håstad could define his test distribution
such that each argument to a function was somewhat “noised.” O’Donnell and Wu, working with
perfectly-satisfiable instances, could not afford this. Instead they made use of the subtle “unpredictability”
of a predicate which strictly contains Parity. Defining a test distribution close to that for MAX-3-LIN-2,
but with somewhat bounded correlation between the arguments to the functions, they used theorems by
Mossel [19] to argue that the analysis behave roughly as though the arguments were somewhat noised.
Following this, the effect of only being “close” to the uniform distribution over Parity had to be bounded.
For this, they extended modern techniques for analyzing PCP’s. They introduced a “matrix-notation
technique” to bound terms of the form E[∏gv] while for terms of the form E[ f u

∏gv], they used a
coordinate-wise distribution-substitution method, also known as “Lindeberg’s method,” to bound the
terms by influences. Their method has subsequently found other applications [26, 25].

We note that all of the steps in the preceding paragraph involve degenerative dependencies on d, the
degrees of projections. This prompted the use of the d-to-1 Conjecture which states that LABEL COVER

remains NP-hard for arbitrarily low soundness error εLC even when the degrees of projections is fixed to a
constant d. The d-to-1 Conjecture is a sibling to the more well-known Unique Games Conjecture (UGC)
which hypothesizes that LABEL COVER is hard even for unique projections, i. e., projection degree d = 1,
albeit for distinguishing instances of value 1− εLC from instances of value εLC as satisfiable instances
can be recognized in polynomial time.

The two conjectures, and in particular the UGC, imply strong or even tight results for a remarkably
large class of NP-hard problems. For instance, that Parity is hereditarily approximation resistant is
equivalently to the statement “any width-m ≥ 3 predicate supporting an (m− 1)-wise-independent
distribution is approximation resistant.” Assuming the UGC, Austrin and Mossel [2] showed that in fact
it suffices for approximation resistance that a predicate supports a pairwise-independent distribution.

Despite considerable efforts to either prove or refute these conjectures, we appear to be nowhere near
settling the conjectures nor theorems serving equivalent purposes. There has however been recent progress
towards circumventing the conjectures for particular problems [25, 10] which is also the strategy of this
treatise. In fact, recently, the UGC-based result of Austrin and Mossel was essentially circumvented
by Chan [5], establishing NP-hard approximation resistance of every predicate containing a subgroup
supporting a pairwise-independent distribution. This result carried numerous implications such as an
almost tight hardness of general width-constrained constraint satisfaction, or, in other words, “how few
satisfying assignments can an approximation-resistant predicate have?,” improving the bound from
2O(m

1/2) of the 2m assignments to simply 2m. It is worth noting that Chan’s result and implications
again hold with regard to distinguishing almost-satisfiable instances. In follow-up by Huang [15], the
techniques of this work as well as of Chan’s were extended to show, with regard to perfectly satisfiable
instances, the approximation resistance of a predicate with 2O(m

1/3) accepting assignments.

Related work on the width-three case We note that our techniques only permit us to show the
approximation resistance of predicates strictly containing Parity of width at least four while we fail to
address the arguably most interesting case of width three. As mentioned above, due to symmetry, the
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width-three case reduces to showing the approximation resistance for satisfiable instances of the predicate
NTW = {000,001,010,100,111}.

In a parallel result, Håstad [13], handles this case with similar but slightly different methods from
ours. In fact, Håstad shows that with slight modifications to the outer verifier and choice of parameters,
the original protocol by O’Donnell and Wu in fact yields approximation resistance of NTW even without
assuming the d-to-1 Conjecture. In both our approach as well as in Håstad’s, reducing from SMOOTH

LABEL COVER is integral to limit the effect of projection degrees in correlations. For the definition of
terms used in this section, we refer the reader to Section 1.2. Instead of sacrificing completeness for noise
in the protocol, one defines in addition to the main distribution over arguments, a noising distribution
on the predicate which is able to break perfect correlations between arguments. In our methods, to get
correlations independent of projection degrees, we employ this distribution independently for different
labels sharing projections. Consequently, for our method to work, the noising distribution needs to have
uniform marginals conditioned on the small-side argument or else the projected marginals will not be
uniform and give away the tested LABEL COVER edge. For the NTW predicate {000,001,010,100,111},
conditioned on the first argument being 0, the choices of the remaining two arguments are 00, 01, and
10. Unfortunately, placing any weight on the 000 outcome cannot produce a uniform marginal with
projections, while putting weight on the other outcomes yields perfect correlation between the three
arguments, and therefore our approach falls short.

O’Donnell and Wu, as well as Håstad, retain uniform marginals while putting weight on the outcome
000 by instead for each small-side label i using the noising distribution at most once among the set of
all large-side labels with projection i and using the outcome 111 to counteract the bias. Naturally, a
consequence of this limited use of the noising distribution is that the correlations between arguments
will depend on the projection degrees. Håstad counteracts this dependency by using, in the analysis,
sufficiently large smoothness parameters so that, e. g., “large” Fourier terms which should be killed
by noise depend on sufficiently many labels as a function of the projection degrees that the dependent
correlations suffice. Normally, such a dependency in smoothness parameters is problematic because it
instead becomes difficult to bound “small” terms. Håstad handles this by dividing terms into “small,”
“medium,” and “large” components where the difference in sizes between small and large terms is
sufficiently extreme that both parts can be suitably handled and what remains is to bound “medium”-sized
terms. The sizes in question depend on the probability that one samples from the noising distribution and
Håstad handles middle terms with a trick from the protocol of MAX-3SAT: randomizing this noising
parameter and in effect the size of small and large terms. Suitably chosen, terms are unlikely to fall in
the medium-size component and hence the contribution of this component is insignificant in expectation.
The downside with this approach is that it introduces a massive, “tower of exponentials,” blowup in the
final smoothness parameters and resulting instance size, although this is still merely a constant.

1.1 Our contributions and techniques

Our main contribution is to circumvent the d-to-1 Conjecture to show that any predicate strictly containing
Parity of width at least four is approximation resistant for satisfiable instances unless P = NP. The
overarching steps of our proof follow those of O’Donnell and Wu, and our main technical contribution
is to extend the methods of Mossel et al. [20, 19] to limit the effects of projection degrees. Subject to
smoothness, explained below, we show that our PCP behaves roughly the same subject to what we call
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projected noise as it does subject to independent noise; more on this below. Additionally, we employ a
multivariate invariance principle extended to projection games which avoids dependencies on the degree
of projections d. We note that a similar elimination of the dependency on d, using different methods, was
recently shown by O’Donnell and Wright [21] for a particular two-variable case employed to show that it
is NP-hard to distinguish 1/2-satisfiable UNIQUE GAMES instances from 3/8+ ε satisfiable.

The SMOOTH LABEL COVER problem serves an integral role in our proofs and is a variant of LABEL

COVER which roughly states that if one looks at a vertex v ∈ V and two labels j 6= j′ ∈ L, over the
random choice e of edges incident v, the two labels are unlikely to share projection; that is, the event
“πe( j) = πe( j′)” has arbitrarily low positive measure over the choice of e ∈ E. SMOOTH LABEL COVER

was first defined by Khot to show approximation hardness of COLORING [16]. Subsequently, Feldman et
al. [9] used it for the hardness of learning monomials, and Guruswami et al. [10] to establish exciting
optimal inapproximability results for two geometric results where previously only optimal UG-hardness
results were known. More intimately related to our work, Khot and Saket [18] used smoothness to show
20/27+ ε approximation hardness of MAX-CSP of width three on satisfiable instances.

Subject to smoothness, we relate what we call projected noise to non-projected or independent noise.
By projected noise, we mean noise where coordinates which share projections are jointly resampled with
some small noise probability while the latter does the same independently for each coordinate. Projected
noise is introduced by conventional techniques from correlation bounds, while independent noise is
typically needed to decode from influences without a dependency on projection degrees. The issue with
the former is that projected noise does not significantly affect functions which depend on a large number
of coordinates with the same projection. However, under SMOOTH LABEL COVER, any function which
depends on many coordinates must essentially depend in expectation on many coordinates with different
projections. With the limited unpredictability of the distribution we define, we can via correlation bounds
introduce projected noise independent of d and subsequently turn it into independent noise because of
smoothness.

With a test distribution which behaves roughly as though arguments were independently noised, we
wish to bound expectations of the form E[∏gv] and E[ f u

∏gv]. For the former, we employ smoothness,
partial independence of the test distribution, and hypercontractivity to argue that the expectation is roughly
the same as for a distribution where all coordinates j ∈ L are drawn independently, as in UNIQUE GAMES.
Since our test distribution is arbitrarily close to being independent over the arguments {y(t)}t in this setting,
the expectation E[∏gv] is close to 0. Finally, we extend the coordinate-wise distribution-substitution
method of O’Donnell and Wu, to show a multivariate invariance theorem similar to Mossel’s [19] but
where bounds do not depend on the degree of projections d. This permits us to effortlessly bound terms of
the form E[ f u

∏gv]. In fact, the soundness analysis of a term E[ f u
∏g] involving functions on both the

small and large label sets—often considered the hardest part of soundness analysis—ecomes the easiest
step subject to this theorem.

It may be pedagogical to discuss what we require to employ our steps. For noise introduction, it
suffices, with smoothness, that each string y(r) has in the marginal distribution over a label j ∈ L bounded
correlation to arguments {y(t)}t 6=r conditioned on {x(t)}t . For bounding products of the form E[∏gv],
we require noise, smoothness, and a roughly m/2-wise independent balanced distribution for {y(t)}t .
For bounding products of the form E[ f u

∏gv] in terms of influences, we require the weak conditions of
uniform marginals and that any single string y(r) is independent of {x(t)}t .
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1.2 Preliminaries

We assume that the reader is familiar with basic probability theory and computational complexity theory.

1.2.1 Basic notation

When clear from the context sub- and superscripts may be omitted. For any real p, we denote by p̄= 1− p,
while for a set A from a possibly implicit universe U, Ā refers to the complementary set U\A. We use
Iverson notation [S] where S is a true/false statement to denote 1 whenever S is true and 0 otherwise. For
a natural number n, the integral interval {1, . . . ,n} is denoted [n]. In this treatise, we deal extensively with
correlated spaces P= (∏m

t=1 Ωt ,µ) over finite domains. When the sample space is clear from the context,
we may also specify measures instead of probability spaces, and vice versa. Given an index set A⊆ [m],
we call ΩA the product space ∏t∈A Ωt . For a single index r ∈ [m], Ω−r denotes the product of all sample
spaces besides Ωr, i. e., ∏t∈A\r Ωt , where A \ r denotes the set A \ {r}. Similarly, Ω−r,−r′ , ΩA\{r,r′}
(where , denotes equality by definition). On a related note, for a set S and element x, we may denote the
difference S\{x} simply by S\ x or S− x. Vectors may for clarity be denoted either by bold font, as in x,
or with an overset arrow, as in ~µ . Given a tuple x = (xi)i∈A and a bijection σ : A↔ A, x◦σ denotes the
tuple (xσ(i))i∈A. For functions π : A→ B, where A and B are arbitrary domains, we may also see π as a
relation, i. e., the set of tuples {(a,b) ∈ A×B | π(a) = b}. The `p norm of f is denoted by || f ||

µ,p and is
defined as

Ex∼µ[| f (x)|p]1/p

for real p≥ 1 and maxx f (x) for p = ∞. When clear from the context, we shall omit the distribution µ .

1.2.2 Operators on probability spaces

Tensoring Given a probability space P= (Ω,µ), the nth tensor power of P is P⊗n = (Ωn,µ ′ = µ⊗n)
where µ ′(ω1, . . . ,ωn) = µ(ω1) · · ·µ(ωn).

Noise operators So called noised functions are standard when analyzing PCPs and we extend the
notion somewhat to encompass also probability spaces.

Definition 1.1. Let P= (Ω1,µ) be a probability space, n an natural number, and f : Ωn→ R a function
on P⊗n. The noise operator, also called the Bonami-Beckner operator, TP,γ̄( f ) : Ωn→Ωn with parameter
γ̄ ∈ [0,1] applied to f takes an argument x = (xi)i∈[n], and yields the expectation of f where for every i, xi

is independently resampled from P with probability γ and otherwise preserved.

We shall typically omit the distribution P when it is clear from the context. The noise operator is
more commonly defined by a parameter specifying the noise, whereas we specify the correlation, a more
natural quantity in our eyes. The relation between the two definitions is immediate, substituting γ̄ for γ .

It is convenient for our proofs to extend the definition of noise operators to probability spaces. In
particular, let P= (∏m

Ωt ,µ) be a correlated probability space, A⊆ [m] an index set, and γ̄ a parameter.
Then, TA

γ̄ P is defined as the probability space which first draws from P and with probability γ resamples
ΩA from its marginal of µ . When A is a singleton {x}, we merely denote the noise operator by Tx

γ̄ rather

THEORY OF COMPUTING, Volume 9 (23), 2013, pp. 703–757 709

http://dx.doi.org/10.4086/toc


CENNY WENNER

than T{x}
γ̄

. Abusing notation, we also use the shorthand Ti1,...,ik
γ̄1,...,γ̄k

for Ti1
γ̄1
· · ·Tik

γ̄k
P. We note that the order of

application of noise operators acting on individual sample spaces does not matter. Furthermore, noise
operators do not affect the marginal distribution of any sample space.

The projection operator In order to conveniently analyze projection-game-based PCPs, we introduce
a projection operator on correlated spaces. Intuitively, the operator yields a correlated space which first
samples a subset of spaces ΩA and then a number of times independently samples the remaining spaces
ΩĀ conditioned on ΩA. In other words, the projection operator is a formal notation for a typical PCP
construction: one samples arguments for a few functions, here indexed by A, followed by “projecting,” or
sampling independently d times, the arguments for the remaining functions conditioned on the former.

Definition 1.2. The degree-d projection, d ≥ 1, from an index set A ⊆ [m] on a correlated space
P = (∏m

Ωt ,µ) is defined as Pd-proj-A , (∏m
Ω′t ,µ

′), where Ω′t = Ωt if t ∈ A and otherwise Ωd
t ; ω ′t =

(ω ′t,i)i∈[d] ∈Ω′t for t /∈ A; and

µ
′(ω ′1, . . . ,ω

′
m) = Pµ

(
ΩA = ~ω ′A

) d

∏
i=1

Pµ

(
∀t /∈AΩt = ω

′
t,i |ΩA = ~ω ′A

)
.

For notational simplicity, we use the shorthand “Pd-proj-1” to denote “Pd-proj-{1}.”

1.2.3 Orthogonal decompositions

Following previous work, our proofs make ample use of the Fourier and Efron-Stein decompositions.
For a finite probability space (Ω,µ), let {χω : Ω→ R}ω∈Ω be an orthonormal basis of L2(Ω,µ) such
that χω ′ = 1 for some ω ′ ∈ Ω. Defining for ~ω ∈ Ωn the character χ~ω(x) = ∏i∈S χωi(xi), the collection
{χ~ω}~ω∈Ωn is an orthonormal basis of L2(Ωn,µn). In particular, if Ω = Fq for some q and the distribution
µ is uniform, one can take χω(x) = e−i2πxω/q and for {χσ}σ∈Fn

q
the Fourier characters (Ωn,µn). For

the Boolean case which we are interested in, i. e., Ω = {−1,1}, we shall simply index the Fourier
characters by subsets S⊆ [n] and defining χS(x) = ∏i/∈S χ0(xi)∏i∈S χ1(x1),∏i∈S xi. A Fourier basis of
L2(Ωn,µn) decomposes a function f : Ωn→ R into coefficients { f̂~ω}~ω of orthonormal characters {χ~ω}~ω
which is suitable for PCP analysis. In particular, for the Boolean domain, f (x) = ∑S⊆[n] f̂SχS(x) where
f̂S = Ex[ f (x)χS(x)] and consequently,

∣∣ f̂S
∣∣≤max f .

Slightly simpler for this work in the non-Boolean domain is however the Efron-Stein decomposition.
To define this decomposition, we introduce “restriction means” of a function to a subset of arguments
relative a measure. We note that these functions have in other works been referred to as projections on
coordinates, in the linear-algebra sense rather than in the sense of LABEL COVER constraints.

Definition 1.3. Let f : Ω(1)×·· ·×Ω(n)→ R, µ a measure on ∏Ω(t), and S⊆ [n]. Then the restriction
mean of f to the argument set S is defined as f⊆S(x) = E[ f (X) |XS = xS].

With this definition in hand, we define the Efron-Stein decomposition as follows.
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Definition 1.4. Let f : Ω(1)×·· ·×Ω(n)→ R and µ a measure on ∏Ω(t). Then the Efron-Stein decom-
position of f with respect to µ is { fS}S⊆[n] where

fS(x) = ∑
T⊆S

(−1)|S\T | f⊆T (x) . (1.2)

Whenever the sample spaces {Ω(t)}t are independent, the decomposition satisfies the following
properties. We note that these properties were in previous work [7, 19] taken as the definition of an
Efron-Stein decomposition, for which (1.2) was the unique construction.

Lemma 1.5 (Efron and Stein [7] and Mossel [19]). Assuming {Ω(t)}t are independent, the Efron-Stein
decomposition { fS}S of f : ∏Ω(t)→ R satisfies:

• fS(x) depends only on xS,

• and for any S,T ⊆ [m], and xT ∈∏t∈T Ω(t) such that S\T 6= /0,

E[ fS(X) |XT = xT ] = 0 .

We note that the relation between Efron-Stein and Fourier decompositions is straightforward,
setting fS(x) = ∑{ f̂SχS(x) : ω̄ ∈Ωn,S = {i | ωi 6= ω ′}}. In the Boolean case, and in effect for our
approximation-hardness application, albeit not for our general techniques, the transforms are interchange-
able where in particular fS(x) = f̂SχS(x).

The effect of the noise operator Tγ̄ additionally has a simply characterization in terms of the de-
compositions. In particular, for a function f with Efron-Stein decomposition { fS}S, the Efron-Stein
decomposition { f ′S}S of f ′ = Tγ̄ f satisfies f ′S = γ̄ |S| fS.

A noised function roughly behaves as a degree-bounded function as follows.

Definition 1.6. The k-low-degree expansion f≤k of a function f : Ωn→R with Efron-Stein decomposition
{ fS}S⊆[n] is defined as

f≤k(x) = ∑
S⊆[n] : |S|≤k

fS(x) .

Similarly,
f>k(x) = ∑

S⊆[n] : |S|>k
fS(x) .

We also note the following well-known corollary of the Hypercontractivity Theorem [4, 3].

Lemma 1.7. Let q≥ 2 be a parameter and f : {−1,1}n→ R a function of degree at most k. Then,

|| f ||q ≤ (q−1)k/2|| f ||2 .

The term shattered was coined by Håstad [13] and denotes an expansion ∑S∈S gS where every non-zero
gS satisfies |π(S)|= |S|. One of our goals is to show that for smooth projections, low-degree functions
are essentially shattered.
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Definition 1.8. Let L,K, and Ω be arbitrary finite sets and consider a projection π : L→ K and a function
g : ΩL→ R. We say that g is shattered when non-zero Efron-Stein terms gT ,T ⊆ L, satisfy |π(T )|= |T |,
i. e., the elements of T have unique projections.

Definition 1.9. With respect to finite sets L,K, and Ω; a projection π : L→ K; and a function g : ΩL→R,
we define the shattered part of g with respect to π , g�π , as

g�π(y) = ∑
T⊆L : |π(T )|=|T |

gT (y) .

In the following lemma, we show that the sum of all Efron-Stein terms fS in a powerset S⊆ B behaves
nicely. More specifically, the following lemma implies that

∣∣∑S:A⊆S⊆B fS
∣∣≤ 2|A||| f ||

∞
. In our applications,

we apply this lemma with constant-sized A.

Lemma 1.10. Let A⊆ B⊆ [n] and { fS}S⊆[n] be the Efron-Stein decomposition of a function f : Ωn→ R.
Then,

∑
S:A⊆S⊆B

fS = ∑
B\A⊆S⊆B

(−1)|B\S| f⊆S .

Proof. By construction, the LHS equals

∑
S:A⊆S⊆B

∑
T⊆S

(−1)|S−T | f⊆T = ∑
T⊆B

(−1)|T | f⊆T ∑
S:A∪T⊆S⊆B

(−1)|S|

= ∑
T⊆B

(−1)|T | f⊆T (−1)|A∪T |
∑

U⊆B\(A∪T )
(−1)|U | . (1.3)

Whenever B \ (A∪ T ) 6= /0, the last expression evaluates to 0. Consequently, non-zero terms satisfy
A∪T = B and, as desired, (1.3) = ∑B\A⊆T⊆B(−1)|B\T | f⊆T .

1.2.4 Influences

A useful concept of functions is the influence of a coordinate. Intuitively, for a function f : {−1,1}n→R,
the influence of coordinate i is how much f (x) changes on average with xi. When analyzing positive
instances in long-code-based PCPs, the functions in question are dictators of the encoded assignments;
formally, f u(x) = xλ (u) where λ (u) is the assignment to the vertex u in the reduced-from LABEL COVER

instance. In the other direction, whenever a protocol accepts with a non-negligible probability over a
random assignment, one would like to argue that the functions must essentially have significant influences
and additionally so, for multiple functions, of coordinates consistent with projections.

Definition 1.11. Let f : Ωn→ R be a function and i ∈ [n] a coordinate. The influence of coordinate i is
Infi( f ) = Ex−i[Varxi[ f (x)]] , where the implicit distributions are uniform over Ωn.

The influence of a coordinate has a nice representation in terms of the Efron-Stein decomposition
with respect to the uniform distribution.

Lemma 1.12. Let f : Ωn→ R be a function and { fS}S its Efron-Stein decomposition with respect to the
uniform distribution. Then,

Infi( f ) = ∑
S3i

E
[

f 2
S
]
≤ Var[ f ] .
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In a similar way, noisy influences are defined as Inf(γ̄)i ( f ) , Infi(Tγ̄ f ) where γ ∈ [0,1] is a noise
parameter. Consequently,

Inf(γ̄)i ( f ) = ∑
S3i

ρ
2|S|E

[
f 2
S
]
.

We note that the total influence of a function with codomain [−1,1] can be of the order n, achieved by for
instance Parity on n bits, while the total noisy influence for γ > 0 is always bounded from above by a
constant depending only on γ .

Lemma 1.13. Let f : Ωn→ [−1,1] be a function and γ a parameter in (0,1]. Then,

TotInf(γ̄)( f ),∑
i

Inf(γ̄)i ( f )≤ γ
−1 . (1.4)

Proof. Expressed in Efron-Stein terms, the total noisy influence equals

(1.4) = ∑
i

∑
S3i

γ̄
2|S|E

[
f 2
S
]
= ∑

S
|S|γ̄2|S|E

[
f 2
S
]
. (1.5)

Using Parseval’s identity, ∑S E
[

f 2
S

]
= E[ f ]2 ≤ 1 for functions of codomain [−1,1] and

(1.5)≤max
S
|S|γ̄2|S| ≤max

k

k

∑
i=1

γ̄
2i ≤ (1− γ̄

2)−1 = (1− (1− γ)2)−1 ≤ γ
−1(2− γ)−1 ≤ γ

−1 .

1.2.5 Correlations

Intimately connected with noise operators is the concept of correlation between sample spaces. We note
that correlations are always bounded by one and noise operators applied to individual sample spaces can
only decrease correlation.

Definition 1.14. The correlation ρ(Ω1,Ω2; µ) between Ω1 and Ω2 with respect to the probability space
P= (Ω1×Ω2,µ) is

ρP(Ω1,Ω2), ρ(Ω1,Ω2; P),max
φ ,ψ

Eµ[φψ] ,

where the maximum is over functions φ : Ω1→ R,ψ : Ω2→ R s.t. E[φ ] = 0 and Var[φ ] = Var[ψ] = 1.

1.2.6 LABEL COVER variants

LABEL COVER is a constraint-satisfaction characterization of probabilistically checkable proofs which,
for sufficiently large domains, has completeness 1 and soundness error arbitrarily close to 0. In particular,
we in the following choose to reduce from the bipartite unweighted multigraph projection-game variant.

Definition 1.15. Instances (U,V,K,L,E,Π) of the gap problem LABEL COVERk consists of a bipartite
multigraph G = (U,V,E), label sets K and L, |K|= k, for the vertices U and V , respectively, and for every
edge e∈E, a projection πe : L→K. A solution to LABEL COVER consists of a labeling λ : U→K,V → L
and the value of a solution is given by the fraction of edges {u,v} ∈ E such that π{u,v}(λ (v)) = λ (u).
Finally, the value of an instance is the maximum value of any solution.
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We additionally refer to K as the small label set and to L as the large, similarly to U and V as the
small- and large-side vertices, respectively.

A useful construction for limiting the effect of projection degrees is smoothness as introduced by
Khot [16]. In Definition 1.16, we have adapted the characterizing definition of smoothness somewhat to
the property typically exploited in PCP analysis. Intuitively, the smoothness property states that whenever
we look at a constant-sized set of labels for a right-side vertex v, the labels have unique projections over
the choice of neighbors of v.

Definition 1.16. A LABEL COVER instance is (J,ξ )-smooth if for any vertex v ∈V and any set of labels
S⊆ L, |S| ≤ J, over a uniformly at random neighbor u ∈U of v, Pu∼v

(
|π{u,v}(S)|< |S|

)
≤ ξ .

Subject to a LABEL COVER instance with the smoothness property, we also say that the a vertex
u ∈U or projection is chosen (J,ξ )-smoothly.

The following definition and subsequent hardness proof of SMOOTH LABEL COVER closely follows
standard constructions. We have adapted the definition insignificantly, choosing bipartite projection
games over multi-layered games, characterizing Definition 1.16 as the essential property of smoothness,
and for notational simplicity derive regular projection degrees.

Theorem 1.17. For any parameters εLC > 0,ξ > 0,J ∈ N, there exists k = k(εLC,J,ξ ) such that Gap-
(1,εLC) LABEL COVERk with the following properties is NP-hard:

• the constraint graph is left- and right regular,

• projections are d(εLC) = 5R1(εLC)-regular,

• and the instances are (J,ξ )-smooth.

Proof. As in Khot [16], a consequence of Papadimitriou and Yannakakis [23], and more specifically
Feige [8], there exists a constant c < 1 such that it is NP-hard to distinguish MAX-3SAT instances with
exactly three literals per clause and five occurrences per variable of value 1 from instances of value at
most c. As a projection game, or LABEL COVER instance, a random clause is sent to the second player
and a random variable from the clause to the first player, accepting if the answers are consistent and
satisfy the clause. The approximation hardness gap implies that distinguishing value-1 instances of this
game from instances of value at most c′ for some constant c′ < 1 is NP-hard. One can extend the game by
adding to each of the three weight-one clause assignments, such as “001,” a duplicate label, e. g., “001*,”
with identical acceptance criteria. This ensures that for every assignment to the queried variable, there are
exactly five satisfying clause assignments while the game remains hard for the same gap. Conventionally
applying the Parallel Repetition Theorem of Raz [24], for some R1 = R1(εLC) rounds of repetition yields
a LABEL COVER instance with the desired completeness, soundness, and graph- and projection-degree
regularity.

To introduce smoothness, let R2 , ξ−1J2 and recall Khot [16]: define new label sets K′ , [R2]×K×
LR2−1 and L′ , LR2 . The new projections π ′ : L′→ K′ are defined as follows: choose t ∈ [R2] uniformly
at random and project ~j = ( j1, . . . , jR2) ∈ L′ to (t,π( jt), j1, . . . , jt−1, jt+1, . . . , jR2) ∈ K′. We note by the
construction that the label-set cardinality is k = k(εLC,J,ξ ) = R22R110R1(R2−1).

Proving the smoothness property, let T be an arbitrary subset of L′ of cardinality at most J. In order
for |π ′(T )|< |T |, at least one of the

(T
2

)
≤ J2 pairs of labels in T ⊆ L′ must project to the same label in
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K′. Any two distinct labels, ~j and ~j′, differ in at least one of their R2 coordinates and unless each of these
coordinates is chosen in the random projection, ~j and ~j′ have distinct projections. As only one coordinate
is projected, this happens with probability at most 1/R2 and a union bound implies that |π ′(T )| < |T |
with probability at most J2/R2 which is no greater than ξ by the choice of R2.

Permutations of labels When reducing from a LABEL COVER instance with regular projection degrees,
we shall identify the “small” label set K with the integer range [k] for some constant k and with the “large”
label set L, the set K× [d]. Several of the quantities we derive, such as correlations between sample
spaces, are properties of the underlying correlated spaces alone and do not depend on the particular
projection, possibly conditioned on projection degrees. For this reason, we prefer to abstract away the
projection and permute the sample spaces suitably when applying said bounds to analyze a LABEL

COVER reduction. Given a projection π : L→ K with projection degrees exactly d, we denote by π̄ an
arbitrary bijection L↔ L such that if, for labels i ∈ K and (i′,r′) ∈ L, π(i′,r′) = i, then there exists r ∈ [d]
such that π̄(i′,r′) = (i,r). In other words, the coordinates are permuted such that (i,r) ∈ L projects to
i∈K. We note that the bounds we derive do not depend on the particular choice of π̄ and we consequently
do not specify these bijections further than being consistent with a projection π . This renaming of
coordinates is straightforward and it is only for smoothness where particular care must be taken.

To demonstrate the defined notation, consider the classical PCP of Parity on three bits courtesy
of Håstad [11]: for a particular LABEL COVER edge e and associated projection πe, choose strings
x ∈ {−1,1}K and y ∈ {−1,1}L uniformly at random, and set for each j ∈ L, z j = xπe( j) ·y j; the test makes
three queries to two tables indexed by the generated strings and accepts if the queries have even parity.
Casting the test distribution in our notation, we consider the base distribution P = (Ω1×Ω2×Ω3,µ)
where Ω1 = Ω2 = Ω3 = {−1,1} and µ(x,y,z) = 1/4 · [xy = z];x,y,z ∈ {−1,1}. Assuming the projection
πe is d-regular for some constant d, the test distribution then corresponds to(

Pd-proj-1⊗K
)π̄e

where π̄e is an arbitrary bijection consistent with πe and the superscript denotes permuting the coordinates
of the sample spaces Ω

[d]×L
2 and ΩL

3 . In Håstad’s construction, the coordinates in z = {z j} j∈L are
additionally resampled independently with some small probability γ > 0; we express this with the noise
operator, choosing as base distribution T(3)

γ̄
P and as test distribution

T =

((
T(3)

γ̄
P
)d-proj-1⊗K)π̄e

.

In this setting, lemmas which hold for, e. g.,

(
T(3)

γ̄
P
)d-proj-1⊗K

also hold for T by identifying coordinates.
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1.3 Main theorem

The main theorem of the paper is the following.

Theorem 1.18. Any predicate P ⊆ {0,1}m,m ≥ 4, strictly containing odd or even Parity on m bits is
approximation resistant for satisfiable instances.

Our proof defines a distribution on the predicate P and shows that every non-constant term in the
Fourier expansion of P must be small in the negative case. Indeed, our proof establishes so-called
uselessness of P introduced in Austrin and Håstad [1], and in extension hereditary approximation
resistance.

For clarity and being the simplest case of interest, we begin by proving the theorem for width-four
predicates. In particular, it suffices to prove the theorem for the arity-four predicate “0,1, or 3” as other
predicates either follows from symmetry or the hereditary approximation resistance of the symmetrical
predicates.

1.4 Organization of the paper

We define the reduction, its claimed soundness, and completeness in Section 2.2. The completeness
argument is straightforward and can be found in Section 2.2.1. As usual with PCP-based hardness
results, the soundness analysis is more involved and deferred to a number of separate sections. In
particular, Section 2.3 establishes bounds on the correlation between sample spaces of our test distribution;
Section 2.4 shows that, due to the correlation bounds, the analyzed expressions behave roughly as though
they were noised; Section 2.5 bounds unmixed terms, i. e., terms of the form E[∏g]; while Section 2.6
bounds mixed expression, i. e., expressions of the form E[ f ∏g], in terms of common influences consistent
with projections. The established lemmas are stated in Section 2.2.2 were it is also shown how they prove
the desired soundness.

In the last part of this paper, we generalize the arguments to predicates of greater width. Sections 3.2,
3.3, 3.4, 3.5, respectively, generalize the PCP protocol, correlation bounds, noise introduction arguments,
and bounds on unmixed terms. In Section 3.6, we establish an invariance-style theorem building on
preceding work which we later apply to bound mixed terms of greater width in Section 3.7. Finally, the
results of these sections are tied together in Section 3.2.1 where it is shown how they imply the soundness
bound of the generalized PCP.

2 Predicates of width four

Let “0, 1, or 3” be the arity-4 Boolean predicate accepting strings x⊆ {0,1}4 containing exactly 0, 1, or
3 ones. In the following, we prove a special case of the main theorem.

Theorem 2.1. The arity-4 predicate “0, 1, or 3” with negation is approximation resistant for satis-
fiable instances. Put differently, for every εCSP > 0, it is NP-hard to distinguish whether a MAX-
CSP+(“0, 1, or 3”) instance has value 1 or value at most |P|/2−4 + εCSP = 9/16+ εCSP.
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2.1 Proof outline

We define a standard Long Code-based protocol reducing from SMOOTH LABEL COVER with the desired
completeness and soundness. The protocol works by sampling a string x uniformly at random from the
small table and subsequently defining three strings on the large table by sampling (y(2)j ,y(3)j ,y(4)j ) condi-
tioned on xπ( j). This second step draws with high probability from the standard three-wise independent
distribution on Odd Parity, and otherwise from a distribution which has positive weight on the additional
all-zeroes assignment.

For the former distribution, if we had noise, we would by standard arguments have that the acceptance
probability is essentially limited to that of a random assignment unless the SMOOTH LABEL COVER

instance has a non-trivial labeling. The second distribution is used precisely to have correlations bounded
away from one, permitting us to introduce noise with the help of smoothness, even when the projection
degrees depend on the desired soundness error.

Having introduced noise, we have to bound terms of the form E[∏g] and E[ f ∏g]. For the former,
we argue that smoothness and partial independence makes the product behave roughly as though we had
unique projections; for this case, the distribution is close to three-wise independent and the products are
insignificantly correlated. For terms involving functions on both tables, i. e., E[ f ∏g], we show via a
multivariate invariance argument that the product is close to E[ f ] E[∏g] = 0 unless a non-trivial labeling
exists.

2.2 The protocol

The hardness of MAX-CSP+(P) follows by a reduction from SMOOTH LABEL COVER as it appears in
Theorem 1.17 with soundness εLC = εLC(εCSP), and label sets K = [k(εLC,J,ξ )] and L = K× [d(εLC)].

To define the reduction R from an instance I, take as variables for the CSP+(P) instance R(I) for every
vertex u∈U , 2|K| Boolean variables and for every vertex v∈V , 2|L| variables. As is standard, we see these
variables as functions f u : {0,1}K →{0,1} and gv : {0,1}L→{0,1}. Let D be the uniform distribution
on “1 or 3” and let E be the distribution which chooses uniformly at random from {0000,0111} with
probability 0.5 and otherwise uniformly at random from {1000,1110,1101,1011}. Define a polynomial
number of constraints corresponding to the following probabilistic verifier.

1. Pick a random vertex u ∈U and a random neighbor v ∈V . Sample π = π{u,v} as defined by the
SMOOTH LABEL COVER instance and let π̄ be an arbitrary bijection L↔ L such that for every
i, i′ ∈ K and r ∈ [d], π(i,r) = i′ iff ∃r′∈[d]π̄(i,r) = (i′,r′).

2. Sample random folding constants a,b ∼ {0,1}. Define fa(x) = a⊕ f u(a⊕ x) and gb(y) = b⊕
gv(b⊕y◦ π̄).

3. For each i ∈ K, independently choose xi uniformly at random from {0,1}. For each j ∈ L,
independently sample (xπ( j),y

(2)
j ,y(3)j ,y(4)j ) conditioned on xπ( j) from D with probability δ̄ and

otherwise E.

4. Accept iff
(

fa(x),gb(y(2)),gb(y(3)),gb(y(4))
)
∈ P.
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We note that queries a⊕ f (a⊕·) are permitted in MAX-CSP+ where the operation a⊕· acts as a
possible negation of a variable. This construct is called folding and ensures that Ex[ f ] = Ey[g] = 0.

The goal is to show the following two properties of the protocol from which Theorem 2.1 follows.
Completeness is argued in Section 2.2.1 and soundness in Section 2.2.2.

Proposition 2.2. The protocol has completeness 1. Said equivalently, if Val(I) = 1, then Val(RP(I)) = 1.

Proposition 2.3. For arbitrary fixed εCSP > 0, the protocol has soundness |P|/16+ εCSP = 9/16+ εCSP.
More specifically, if Val(I)≤ εLC = εLC(εCSP), then Val(RP(I))≤ 9/16+ εCSP.

Constants To be precise, m, the width of the predicate equals 4. Let δ ≤ 2−16ε2
CSP, define

ρ0 ,
√

1/2+1/2(1−δ 2/8)2 ,

and choose γ > 0 sufficiently close to 0 such that supk ρk
0(1− γ̄k)≤ 2−8εCSP.2 Again, define

ρ1 ,
√

1− γ3

and choose η > 0 sufficiently close to 0 such that supk ρk
1(1− η̄k)≤ 2−8εCSP. Set the smoothness parame-

ters J ≥ 1+2log(2−8εCSP/10)/ log(γ̄), and ξ ≤ 2−183−3J/2−2ε2
CSP. Finally, εLC(εCSP) = 2−12ηγ3εCSP

2.

Proof of Theorem 2.1

Proof. A random assignment satisfies the predicate P with probability |P|/16 = 9/16. To establish the
theorem, we wish to show for every εCSP > 0 that Gap-(1,9/16+ εCSP) CSP+(P) is NP-hard. This
follows by the following Propositions 2.2 and 2.3, together with the fact that the defined reduction yields
at most a polynomial blow-up of instance size.

2.2.1 Completeness

Proving perfect completeness of the protocol is standard and essentially follows by inspection.

Proof of Proposition 2.2. By the value of the Label Cover instance, there is an assignment λ : U →
K,V → L satisfying for every constraint π{u,v},{u,v} ∈ E,λ (u) = π{u,v}(λ (v)). Define a solution to
RP(I) by the corresponding dictators, i. e., { f u(x) = xλ (u)}u∈U and {gv(y) = yλ (v)}v∈V .

Following the protocol, let u,v, and π̄ be as chosen, implying {u,v} ∈ E. Let (i,r) = π̄(λ (v)); as
the Label Cover instance satisfied all constraints, we have i = λ (u) and consequently, fa and gb satisfies
fa(x) = xi and gb(y) = y(i,r). The protocol hence accepts iff(

xi,y
(2)
(i,r),y

(3)
(i,r),y

(4)
(i,r)

)
∈ P .

As the protocol draws this tuple either from D or E and their respective support is in P, we conclude that
the protocol always accepts.

2For instance, one can take γ̄ = ρ2−8εCSP .
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2.2.2 Soundness

As is usual, we establish the soundness via the contradiction of its contrapositive: supposing that the
acceptance probability of RP(I) is greater than |P|/16+ εCSP, we show that there is a labeling of the
SMOOTH LABEL COVER instance I achieving value greater than εLC = εLC(εCSP). The dependency in
particular is εLC(εCSP) = 2−12ηγ3εCSP

2 where the noise constants η and γ appear below.

Notation Define the following distributions which appear in our proofs,

T0 = δ̄D+δE, T′0 = T
d-proj-1
0

⊗K
, T′1 =

(
T2,3,4

γ̄
T

d-proj-1
0

)⊗K
,

T′2 =
(

T2,3,4
γ̄

(
T1

η̄ T0
)d-proj-1

)⊗K
, T3 = T1

η̄ T2,3,4
γ̄

T0, T′3 = T
d-proj-1
3

⊗K
, T′′3 = T⊗L

3 .

The test distribution of the protocol corresponds to T′0. Intuitively, T′1 is the distribution where projected
noise is applied to y(2),y(3), and y(4), i. e., all coordinates which share projection are changed by noise
simultaneously. T′2 is the same distribution but with noise applied also to x. We note that projected
and non-projected (independent) noise are the same for x as it is defined on the smaller table. T′3 is
the distribution all strings—x,y(2),y(3), and y(4)—all have independent noise. Finally, in T′′3 , we have
independent noise as in T′3 but for each j ∈ L, the tuple (y(2)j ,y(3)j ,y(4)j ) is drawn independently when,
as in our analysis for this distribution, we are not concerned with x. For notational simplicity, define
f = Ea[ fa] and g = Eb[gb]. Let the queried points of the functions be

q1 , f (x), q2 , g(y(2)), . . . , q4 , g(y(4)) .

As is usual for PCP analysis, we substitute 1 for −1 and 0 for 1, and freely switch between the two
conventions whenever convenient. Considering the Fourier transform {P̂Γ}Γ⊆[4] of the predicate, the
acceptance probability of the protocol equals EE,T′0

[
∑Γ⊆[4] P̂ΓχΓ(q)

]
where the distribution is over a

random edge e ∈ E from the SMOOTH LABEL COVER instance and the arguments from T′0. For an
arbitrary Γ 6= /0 and distribution R, let us denote by ψΓ(R) = EE,R[χΓ(q)]. Conceptually, we refer to these
terms as E[∏g] or E[ f ∏g] for zero or more functions g. We also note that the acceptance probability in
the new notation equals ∑Γ P̂ΓψΓ(T

′
0).

Properties of the protocol By inspection, we see that all distributions above have the basic property
that all four arguments, x,y(2), . . . ,y(4), have uniform marginals. Additionally, each y(t) argument is on
its own independent of x.

Lemma 2.4. Let t ∈ {2,3,4} and consider either distribution T′r,r = 0,1,2,3. The marginals on x and
y(t) are uniform and furthermore y(t) is independent of x.

Proof. For simplicity of this proof, we use the 0,1-notation. By inspection, x has uniform marginals for
both D and E and consequently T′0. By symmetry, consider the probability of the outcomes 00, 01, 10,
and 11 for (x1,y2) in D and E, respectively. Again by inspection, these outcomes each have probability
1/4. As x has uniform marginals and sampling is done independently for every coordinate j conditioned
on xπ( j), the lemma follows.
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For either of the other distributions, it suffices to notice that the noise operators do not change
marginals nor introduce dependencies.

The aim is to show the following four propositions from which the soundness follows. We note
that the first proposition establishes basic properties while the remaining three mimic the approach of
O’Donnell and Wu [22]. The proofs of these latter three lemmas are deferred to Section 2.4, Section 2.5,
and Section 2.6, respectively.

The first proposition states that, due to the preceding independence, terms involving at most one y(t)
argument are zero.

Proposition 2.5. ψΓ(T
′
0) = 0 for /0 6= Γ⊆ [4], |Γ∩{2,3,4}| ≤ 1.

Proof. As shown in Lemma 2.4, the test distribution has uniform marginals. Hence ψ{t}(T
′
0) = EE,T′0

[qt ]
which equals EE[E[ f ]] or EE[E[g]], both of which are 0 due to folding. Suppose Γ = {1, t}. Then
ψΓ(T

′
0) = EE,T′0

[ f g] = E[ f ] E[g] = 0 since y(t) is uniform and independent of x by Lemma 2.4, subse-
quently folding yields expectation 0.

The second lemma, which involves smoothness and significant technical work, argues that terms
are in expectation roughly the same with the original test distribution as the test distribution with noise,
independent of d, on all arguments. We note that the constants

ρ0 =
√

1/2+1/2(1−δ 2/8)2 and ρ1 =
√

1− γ3

appearing in the proposition are correlation bounds appearing in the proofs and are bounded away from 1
depending only on δ and γ .

Proposition 2.6.∣∣ψΓ(T
′
0)−ψΓ(T

′
3)
∣∣≤ sup

k≥0
ρ

k
0(1− γ̄

k)+ sup
k≥0

ρ
k
1(1− η̄

k)+6
√

ξ +6γ̄
J ≤ εCSP/256

for any Γ⊆ [4].

Third, over the noised distribution, terms of the form E[∏g] are shown to have an expectation which
approaches 0 as parameters are tweaked.

Proposition 2.7. |ψΓ(T
′
3)| ≤ 4γ̄J/2−1 +6 ·33J/4

√
ξ +
√

δ ≤ εCSP/256 for 1 /∈ Γ⊆ [4], |Γ| ≥ 2.

Finally, we bound terms of the form E[ f ∏g]. This is often considered the hardest part of PCP
analysis. However, the argument is almost immediate after we extend Mossel’s multivariate invariance
principle [19] to projection games.

Proposition 2.8. |ψΓ(T
′
3)| ≤ 8

√
γ−1 EE

[
∑(i, j)∈π Inf(η̄)

i ( f )Inf(γ̄)j (g)
]

for 1 ∈ Γ⊆ [4], |Γ| ≥ 3.
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Proof of Proposition 2.3 Propositions in hand, we proceed to show how they imply the desired
soundness.

Proof. As is usual, we establish the soundness through the contradiction of its contrapositive: supposing
that the acceptance probability of RP(I) is greater than |P|/16+ εCSP, we show that there is a labeling of
the SMOOTH LABEL COVER instance I achieving value greater than εLC = εLC(εCSP) = 2−12ηγ3εCSP

2.
The labeling in question is the (η̄ ,γ)-Noisy Influence Assignment which independently sets vertex

u resp. v to label i resp. j with probability proportional to Inf(η̄)
i ( f u) resp. Inf(γ̄)j (gv). By Lemma 1.13,

this defines probability measures with normalization constants bounded by η and γ , respectively. By this
labeling, the SMOOTH LABEL COVER instance has value at least

PE(λ (u) = π(λ (v))≥ ηγ EE

[
∑

(i, j)∈π

Inf(η̄)
i ( f )Inf(γ̄)j (g)

]
. (2.1)

Suppose that the assignment { f u}u∈U ,{gv}v∈V achieves value greater than |P|/16+ εCSP for some
εCSP > 0. Taking the Fourier expansion of the predicate P, the acceptance probability equals ∑Γ P̂ΓψΓ(T

′
0).

We note that the term with Γ = /0 equals |P|/16. For the remaining terms, let A,B, and C be the respective
choices of Γ appearing in Proposition 2.5, 2.7, and 2.8, respectively. By the first of these lemmas, for any
Γ ∈ A, ψΓ(T

′
0) = 0. We also note that

∣∣P̂Γ

∣∣≤ 1 for any Γ. Consequently,

∑
Γ∈B+C

∣∣ψΓ(T
′
0)
∣∣> εCSP .

By Proposition 2.6 and the choice of parameters,

∑
Γ∈B+C

∣∣ψΓ(T
′
3)−ψΓ(T

′
0)
∣∣≤ εCSP/4 .

By Proposition 2.7 and the choice of parameters again,

∑
Γ∈B

∣∣ψΓ(T
′
3)
∣∣≤ εCSP/4 .

Consequently, using Proposition 2.8 and |C| ≤ 4, for some Γ ∈C,

εCSP/8≤
∣∣ψΓ(T

′
3)
∣∣≤ 8

√√√√γ−1 EE

[
∑

(i, j)∈π

Inf(η̄)
i ( f )Inf(γ̄)j (g)

]
.

That is,

EE

[
∑

(i, j)∈π

Inf(η̄)
i ( f )Inf(γ̄)j (g)

]
> 2−12

γ
2
εCSP

2.

Relating to (2.1), we see that the (η̄ ,γ)-noisy influence assignment achieves a value greater than
εLC(εCSP) = 2−12ηγ3εCSP

2, as desired.
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2.3 Correlation bounds for the test distribution

In this subsection, we establish bounds on the correlation between strings in our test distribution. We
view the distribution T′0 as sampling |K| copies on the correlated space Ω1×Ωd

2×Ωd
3×Ωd

4 where each
Ωt equals {−1,1} but is indexed for clarity. These samples form x,y(2),y(3), and y(4), respectively.

The correlation bounds we aim to establish for the test distribution are the following. The first lemma
shows that for our test distribution T0, the correlation between arguments to g functions are bounded
away from 1 independent of d. This in turn will enable us to introduce projected noise for g functions.

Lemma 2.9.

ρ

(
Ω1×Ω

d
2×Ω

d
3 ,Ω

d
4 ; Td-proj-1

0

)
≤

√
1
2
+

1
2

(
1− δ 2

8

)2

.

Proof. Proved in Section 2.3.2.

The second lemma essentially says that after we have introduced projected noise for all g functions,
the argument to f has correlation bounded away from 1 independent of d, enabling us to introduce noise
for f .

Lemma 2.10.
ρ

(
Ω1,Ω

d
2×Ω

d
3×Ω

d
4 ; T2,3,4

γ̄
T

d-proj-1
0

)
≤
√

1− γ3 .

Proof. Proved in Section 2.3.2.

The third and final lemma is used to show that a product of g-functions is always small if we do
not have projections. This will be the final step when we bound terms of the form E[∏g] after we have
argued that the product behaves roughly as though there were unique projections.

Lemma 2.11.
ρ (Ω2,Ω3×Ω4; T0)≤

√
δ .

Proof. Proved in Section 2.3.2.

2.3.1 Preliminaries

We begin by introducing the concept of expected conditional expectation and present lemmas which
simplify our proofs.

Definition 2.12. Let P= (Ω = ΩA×ΩB×ΩC,µ) be a correlated probability space and {Ei}i a partition
of Ω. The expected conditional correlation between ΩA and ΩB conditioned on {Ei}i with respect to the
measure µ is

ρµ(ΩA,ΩB | {Ei}i; P) = EEi∼µ

[
ρµ(ΩA,ΩB; P | Ei)

2]1/2
,

where “P | Ei” is the probability space conditioned on the event Ei.

In the special case when the partition {Ei} is the set of indicators of a correlated space ΩC, we
simplify notation as follows.
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Definition 2.13. The expected conditional correlation between ΩA and ΩB conditioned on ΩC with
respect to the measure µ is

ρµ(ΩA,ΩB | ΩC; P) = EωC∼µ

[
ρµ(ΩA,ΩB; P | ωC)

2]1/2
,

where “P | ωC” is the probability space conditioned on the event “ΩC = ωC.”

We recall and slightly reformulate useful lemmas from Mossel [19]. The first lemma gives an explicit
expression for computing correlations and is particularly useful for comparing correlations between
different probability spaces.

Lemma 2.14 (Lemma 2.8, Mossel [19]).

ρµ(ΩA,ΩB) = sup
φ∈L2

µ (ΩA),Eµ[φ ]=0,Varµ[φ ]=1
EωB∼µ ΩB

[
Eµ [φ |ωB]

2
]1/2

.

The second lemma says that if two functions depend on a number of independent correlated spaces,
then they can maximize their correlation by using only one set of correlated spaces.

Lemma 2.15 (Proposition 2.13, Mossel [19]). Correlated probability spaces
{(

Ω
(i)
A ×Ω

(i)
B ,µi

)}
i
satisfy

ρ

(
∏Ω

(i)
A ,∏Ω

(i)
B ; ∏µi

)
≤maxρ

(
Ω

(i)
A ,Ω

(i)
B ; µi

)
.

Finally, the following lemma provides a simple upper bound on the correlation of any probability
space; however, it would be deteriorating with projection degrees if used immediately in our applications.

Lemma 2.16 (Lemma 2.9, Mossel [19]). Let (ΩA×ΩB,P) be a correlated space where the minimum
strictly positive probability of any outcome is α . Consider the bipartite graph G = (ΩA,ΩB,E) where
{x,y} ∈ E iff (x,y) ∈ΩA×ΩB has strictly positive probability. If G is connected, then

ρ(ΩA,ΩB; P)≤ 1−α
2/2 .

We establish in the following three lemmas useful for dealing with correlations. The first shows
formally the intuitive property that the expected correlation between two sample spaces conditioned on
a set of events partition the product sample space is greater than the correlation without knowledge of
any events. This will prove useful in bounding correlations which involve sample spaces growing with
projection degrees.

Lemma 2.17. Let (∏m
Ωt ,µ) be a correlated probability space, A,B non-empty subsets of [m], and {Ei}i

a partition of the sample space such that either ΩA or ΩB is independent of {Ei}i, i. e., the marginal
distribution of the sample space ΩA or ΩB remains unchanged conditioned on any event E ∈ {Ei}i. Then,

ρ (ΩA,ΩB; P)≤ ρ (ΩA,ΩB | {Ei}i; P) .
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Proof. Without loss of generality, let ΩB be independent of {Ei}i. Note that EE[·] in this proof denotes
the expectation over events in {Ei}i; not the expectation over a random edge as in the analysis of our
protocol.

By Lemma 2.14 and subsequently Jensen’s inequality, the LHS equals

sup
φ

EωA

[
EΩB[φ |ωA]

2
]1/2
≤ sup

φ

EE,ωA

[
EΩB[φ |E,ωA]

2
]1/2

, (2.2)

where the supremum is over φ ∈ L2(ΩB) with expectation 0 and variance 1 with respect to µ . Using that

sup
x∈X

E
[
x2]1/2

=

(
sup
x∈X

E
[
x2])1/2

for x≥ 0 and subsequently independence between ΩB and the events,

(2.2) =

(
sup

φ

EE,ωA

[
EΩB[φ |E,ωA]

2
])1/2

≤ EE

[
sup

φ

EωA | E

[
EΩB[φ |ωA]

2
]]1/2

. (2.3)

Again from Lemma 2.14, we recognize this supremum as ρ (ΩA,ΩB; P | E)2. Consequently,

(2.3) = EE∈{Ei}i

[
ρ (ΩA,ΩB | E; P)2

]1/2
,

which we recognize as the definition of ρ (ΩA,ΩB | {Ei}i; P).

As a corollary, there is a simple bound on the correlation between a mixture of distributions from the
correlations of the respective distributions.

Corollary 2.18. Let (ΩA,ΩB, δ̄ µ +δν) be a correlated space such that the marginal distribution of at
least one of ΩA and ΩB is identical on µ and ν . Then,

ρ
(
ΩA,ΩB; δ̄ µ +δν

)
≤
√

δ̄ ρµ(ΩA,ΩB)2 +δρν(ΩA,ΩB)2 .

Proof. Suppose that the marginal of ΩA is identical on µ and ν . In consequence, the marginal coincides
for these distributions with δ̄ µ + δν . We extend the sample space by an indicator of the drawn-from
distribution and note that it does not change the correlation. Since ΩA is independent of this outcome, we
can apply Lemma 2.17 to the indicator for the desired corollary.

Finally, there is a simple bound between sample spaces independent of projection degrees. Namely,
if ΩA are the sample spaces which do not grow with the projection degree d, and conditioning on ΩA

does not change the marginal distribution of one of the considered sample spaces, then the spaces cannot
achieve higher correlation than having ΩA revealed and using a single of the d independent samples.

Corollary 2.19. Let A,B,C be disjoint subsets of [m] and P= (∏m
Ωt ,µ) a correlated probability space

such that ΩC is independent of ΩA. Then,

ρ

(
ΩA×Ω

d
B,Ω

d
C; Pd-proj-A

)
≤ ρ (ΩB,ΩC | ΩA; P) .
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Proof. We use Lemma 2.17 with the events {Ei}i the outcomes of ΩA, which are independent of ΩC by
the corollary hypothesis. The LHS is thusly bounded

LHS≤ ρ

(
Ω

d
B,Ω

d
C | ΩA; Pd-proj-A

)
= EωA

[
ρ

(
Ω

d
B,Ω

d
C; (P | ωA)

⊗d
)2
]1/2

.

From Lemma 2.15, we know that these correlations are bounded by any the greatest correlation of any
one sample, i. e.,

EωA

[
ρ (ΩB,ΩC; P | ωA)

2
]1/2

,

which we identify as the definition of ρ (ΩB,ΩC | ΩA; P).

2.3.2 Proof of Lemmas 2.9 to 2.11

Preliminaries in hand, we turn to the proofs of the main lemmas of this subsection. The proofs are ordered
by simplicity.

Proof of Lemma 2.11. With probability δ̄ , Ω4 is drawn from D in which case it is independent of
Ωd

2×Ωd
3 , yielding a correlation of 0. In the other event, the correlation is bounded by 1. Hence, using

Theorem 2.18,
ρ

(
Ω2×Ω3,Ω4; Td-proj-1

3

)
≤
√

δ̄ ·02 +δ ·12 ≤
√

δ .

Proof of Lemma 2.10. We recall that the considered distribution is T2,3,4
γ̄

T
d-proj-1
0 . With probability γ3,

the outcome of Ωd
2×Ωd

3×Ωd
4 is independent of Ω1 and the correlation is 0. Denote this event by A and

let the correlations of the two possibilities be, respectively, ρA = 0 and ρĀ ≤ 1. Then,

ρ

(
Ω1,Ω

d
2×Ω

d
3×Ω

d
4 ; T2,3,4

γ̄
T

d-proj-1
0

)
≤
√

P(A)ρ2
A +P

(
Ā
)

ρ2
Ā ≤

√
γ3 ·02 +(1− γ3) ·12 =

√
1− γ3 .

Proof of Lemma 2.9. Lemma 2.4 implies that Ωd
4 is independent of Ω1. Applying Theorem 2.19 with

A = {1},B = {2,3},C = {4}, we get

ρ

(
Ω1×Ω

d
2×Ω

d
3 ,Ω

d
4 ; Td-proj-1

0

)
≤ ρ(Ω2×Ω3,Ω4 | Ω1; T0)

which by definition equals Eω1

[
ρ(Ω2×Ω3,Ω4; T0 | ω1)

2
]1/2.

Switching to {0,1} notation again, to establish that the considered correlation is bounded away from
1, it suffices that the conditioned correlation is bounded away from 1 for at least one of the cases ω1 = 0
and ω1 = 1. This is precisely what we do, we bound the latter by 1 and find a smaller bound for the case
ω1 = 0.

To this end, we employ Lemma 2.16. The bipartite graph in question has left vertices Ω2×Ω3,
right vertices Ω4, and an edge {(ω2,ω3),ω4} whenever (ω2,ω3,ω4) has strictly positive probability,
P({(ω1 = 0,ω2,ω3,ω4)}) > 0. Lemma 2.16 states that if this graph is connected, then the correlation
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is bounded away from 1. To be specific, at most 1−α2/2 where α is the smallest strictly positive
probability of any outcome.

Conditioned on ω1 = 0 and ω4 = 0, all choices of (ω2,ω3) except (1,1) have positive probability:
those of odd parity from D and the (0,0) outcome from E. In effect, all left vertices in the graph except
for (ω2,ω3) = (1,1) are connected to ω4 = 0. On the other hand, conditioned on ω1 = 0 and ω4 = 1, the
distribution D has positive probability for both (ω2,ω3) = (0,0) and (1,1), allowing us to conclude that
the graph indeed is connected.

By inspection, the minimum strictly positive probability of any outcome α for the distribution
T0 = δ̄D+ δE conditioned on ω1 = 0 is given by E as δ is close to 0. E only has two outcomes
conditioned on ω1 = 0, namely 0000 and 0111, each with conditioned probability 0.5. Consequently,
α = δ/2, implying ρ(Ω2×Ω3,Ω4; T0 | ω1 = 0)≤ 1−δ 2/8 and, as desired,

ρ

(
Ω1×Ω

d
2×Ω

d
3 ,Ω

d
4 ; Td-proj-1

0

)
≤

√
1
2
·12 +

1
2

(
1− δ 2

8

)2

.

2.4 Noise introduction

We first show a theorem which allow us to go from projected noise to independent non-projected noise.

2.4.1 Equivalence of projected and non-projected noise

In this subsection, we show that when analyzing an expectation E[∏g] or E[ f ∏g] and projections
are chosen as in SMOOTH LABEL COVER, the expected difference of this term with projected and
non-projected noise is bounded by a constant depending only on and strictly decreasing with smoothness
parameters ξ−1 and J.

By non-projected noise, we mean the classical noise in hardness of approximation: every coordinate
y j ∈ Ω of a string y is independently resampled from the marginal of the distribution with a fixed
probability. By projected noise, we mean the noise as used by Mossel [19]: every group of coordinates
{y j}π( j)=i ∈Ω|π

−1(i)| with the same projection are jointly resampled from the distribution’s marginal with
a fixed probability.

Lemma 2.20. Consider label sets K,L = K× [d] and a function g = gv : ΩL
C→R defined on a probability

space
P= (ΩA×ΩB×ΩC,µ)

d-proj-A⊗K

where ΩC is independent of ΩA. Let π = π{u,v} : L→ K be chosen (J,ξ )-smooth and define Pπ̄ by
permuting the arguments of g in accordance with an arbitrary permutation π̄ consistent with π . Let
{gS}S⊆L be the Efron-Stein decomposition of g and denote by Uπ

S the event ‘|π(S)| ≥min{J, |S|}′. Then,

Eπ

∣∣∣∣∣∣
∣∣∣∣∣∣ ∑S :Uπ

S

gS

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤√ξ Var[g] ,

where the norm is over Pπ̄ .
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Proof. We let the implicit distribution of the proof draw P, π and set Pπ̄ accordingly. We also note that
by the hypothesis that ΩC is independent of ΩA, the Efron-Stein decomposition of g with respect to P

satisfies the usual properties of Lemma 1.5. In fact, as neither g nor its marginal distribution depends on
π , the Efron-Stein decomposition with regard to the distribution Pπ̄ is the same regardless of π . For this
reason, we shall not specify further which distribution the decomposition is with respect to.

We begin by rewriting the left term,

LHS = E

(∑
S

[
Uπ

S

]
gS

)2
1/2

= Eπ

[
∑
S,T

[
Uπ

S ∧Uπ
T

]
EPπ̄ [gSgT ]

]1/2

. (2.4)

By the properties of Efron-Stein decompositions, EPπ̄ [gSgT ] is 0 unless S = T . Furthermore, EPπ̄

[
g2

S

]
only depends on the marginal distribution of ΩM

C and is independent of π . Hence,

(2.4) =

(
∑
S

Pπ

([
Uπ

S

])
EP

[
g2

S
])1/2

. (2.5)

The permutation π was chosen to be (J,ξ )-smooth and consequently the probability in the expression is
bounded by ξ , 0 in particular for S = /0, and the remaining sum is the variance of g by Parseval’s:

(2.5)≤

(
ξ ∑

S 6= /0
EP

[
g2

S
])1/2

= (ξ Var[g])1/2 .

Theorem 2.21. Let K and L = K× [d] be label sets, γ ∈ (0,1] a parameter, D a distribution on ΩA×
ΩB×ΩC such that ΩC is independent of ΩA, and finally h : ΩK

A ×ΩL
B→ [−1,1] and g : ΩL

C → [−1,1]
functions. Define

P=
(

T(C)
γ̄

D
)d-proj-A⊗K

, R=
(

T(C)
γ̄

Dd-proj-A
)⊗K

.

Additionally, let π : L→ K be chosen (J,ξ )-smooth and define Pπ̄ and Rπ̄ by permuting coordinates
accordingly. Then, ∣∣Eπ,Pπ̄ [hg]− Eπ,Rπ̄ [hg]

∣∣≤ 2
√

ξ +2γ̄
J. (2.6)

Proof. We note that ΩL
C is independent of ΩK

A in both P and R despite noise. Furthermore, neither
kind of noise affects the marginals of ΩL

C; in fact the marginals of P,R, and Dd-proj-A⊗K coincide and
consequently they share Efron-Stein decompositions. Rewriting the LHS,

LHS =

∣∣∣∣∣∣Eπ,Pπ̄

[
h ∑

S :Uπ
S

gS

]
− Eπ,Rπ̄

[
h ∑

S :Uπ
S

gS

]
+ Eπ,Pπ̄

h ∑
S :Uπ

S

gS

− Eπ,Rπ̄

h ∑
S :Uπ

S

gS

∣∣∣∣∣∣
≤

∣∣∣∣∣Eπ,Pπ̄

[
h ∑

S :Uπ
S

gS

]
− Eπ,Rπ̄

[
h ∑

S :Uπ
S

gS

]∣∣∣∣∣+
∣∣∣∣∣∣Eπ,Pπ̄

h ∑
S :Uπ

S

gS

∣∣∣∣∣∣+
∣∣∣∣∣∣Eπ,Rπ̄

h ∑
S :Uπ

S

gS

∣∣∣∣∣∣ . (2.7)
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Applying Cauchy-Schwarz to either of the two latter terms and subsequently Lemma 2.20,

(2.7)≤

∣∣∣∣∣Eπ,Pπ̄

[
h ∑

S :Uπ
S

gS

]
− Eπ,Rπ̄

[
h ∑

S :Uπ
S

gS

]∣∣∣∣∣+2
√

ξ Var[g]||h||2 .

Since the domain of g and h is [−1,1] we note that their variance and l2
2-norms are both bounded by 1.

This yields the first term on the RHS of (2.6).
We proceed to bound the difference. The event Uπ

S corresponds to |π(S)| = |S| and/or |π(S)| ≥ J.
Whenever the former holds, the expectation over Pπ̄ and Rπ̄ coincide, i. e., projected and non-projected
noise are the same.

It remains to bound the case when |S| 6= |π(S)| ≥ J. However due to noise, the contribution of such
terms is small. Let us show this formally through standard analysis, denoting

D′ =Dd-proj-A⊗K

and noting that the larger of the two terms is over R′ which can be seen in the following derivation by
substituting |π(S)| for |S|.∣∣∣∣∣Eπ,Pπ̄

[
h ∑

S : |S|6=|π(S)|≥J
gS

]
− Eπ,Rπ̄

[
h ∑

S : |S|6=|π(S)|≥J
gS

]∣∣∣∣∣≤ 2

∣∣∣∣∣Eπ,Rπ̄

[
h ∑

S : |S|6=|π(S)|≥J
gS

]∣∣∣∣∣
= 2

∣∣∣∣∣Eπ,D′π̄

[
h ∑

S : |S|6=|π(S)|≥J
γ̄
|π(S)|gS

]∣∣∣∣∣≤ 2Eπ,D′π̄
[
h2]1/2 Eπ,D′π̄

( ∑
S : |S|6=|π(S)|≥J

γ̄
|π(S)|gS

)2
1/2

≤ 2 ∑
S : |S|6=|π(S)|≥J

Eπ,D′π̄

[
γ̄

2|π(S)|g2
S

]1/2
≤ 2γ̄

J Eπ,D′π̄

[
∑
S

g2
S

]1/2

≤ 2γ̄
J Eπ,D′π̄

[
g2]1/2 ≤ 2γ̄

J .

2.4.2 Proof of Proposition 2.6: Introducing noise in soundness analysis

The introduction of noise, independent of d, follows three steps. The first step is to argue that the
correlation of the argument of a function is bounded away from one independent of d. As a second
step, this permits us to employ a theorem by Mossel [19] to introduce a certain kind of noise, which we
call projected noise, without changing the expectation too much. Finally we use our techniques of the
preceding subsection to show that the introduced noise behaves roughly as independent noise.

To clarify these points, the noise introduced by the mentioned theorem, which we shall call projected
noise, jointly resamples all d coordinates j ∈ L which project to the same coordinate i ∈ K. What we
would like is for every coordinate j ∈ L to be resampled independently. This is an important distinction
in soundness analysis where for instance the former may permit arbitrarily large parities of coordinates in
π−1(i) to achieve a significant value. Standard decoding procedures, including Håstad’s classical, and the
more modern low-degree or noisy influences, fail in this setting as the number of potential coordinates
grows with the soundness of the LABEL COVER instance and, in extension, the degree of projections.

We circumvent these problems with the machinery from the preceding subsection; smoothness
essentially guarantees that functions which depend on many coordinates, depend on many coordinates
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with different projections. In effect, we show that projected noise behave roughly the same as independent
noise in this setting.

Formalizing slightly, the first step of Proposition 2.6 is to introduce projected noise for every y(t)
string, i. e., to go from the distribution T′0 to T′1. Having done so, the correlation of x to (y(t))t is bounded
away from one independent of d, permitting noise introducing for x, defined as the distribution T′2. We
note that projected and independent noise are the same for x. Finally, we use smoothness and the projected
noise of y(t) to show that it behaves roughly as independent noise, yielding the distribution T′3. The three
steps may be expressed through the following lemmas.

Lemma 2.22. Let Γ⊆ [4], |Γ| ≥ 2 and define ρ0 =
√

1/2+1/2(1−δ 2/8)2. Then,∣∣E[ψΓ(T
′
0)−ψΓ(T

′
1)
]∣∣≤ 3sup

k
ρ

k
0(1− γ̄

k) .

Proof. Proved in Section 2.4.2.

Lemma 2.23. Let Γ⊆ [4], |Γ| ≥ 2 and define ρ1 =
√

1− γ3. Then,∣∣E[ψΓ(T
′
1)−ψΓ(T

′
2)
]∣∣≤ sup

k
ρ

k
1(1− η̄

k) .

Proof. Proved in Section 2.4.2.

Lemma 2.24. Let Γ⊆ [4], |Γ| ≥ 2. Then,∣∣E[ψΓ(T
′
2)−ψΓ(T

′
3)
]∣∣≤ 6

√
ξ +6γ̄

J .

Proof. Proved in Section 2.4.2.

Proof of Proposition 2.6. Follows directly from Lemmas 2.22, 2.23, and 2.24 by summing the respective
differences.

We begin by recapping a corollary of a lemma by Mossel [19] and next define the concept of “lifted”
functions with notation borrowed from Dinur et al. [6].

Corollary 2.25 (Corollary of Lemma 6.1, Mossel [19]). Let P= (Ω1×Ω2,µ) be a correlated probability
space satisfying ρ(Ω1,Ω2) ≤ ρ < 1. Consider functions { ft : Ωn

t → [−1,1]}t=1,2 and an arbitrary
constant γ ∈ (0,1]. Then, ∣∣EP⊗n[ f1 f2]− EP⊗n

[
(Tγ̄ f1) f2

]∣∣≤ sup
k

ρ
k(1− γ̄

k) .

In the setting of Theorem 2.25, the involved functions are defined on a product space (Ω′1×Ω′2,µ)
⊗n.

For proper treatment, we define equivalent functions where the sample spaces are products of all same
sample spaces with the same projection.

Definition 2.26. The lifted function g : {{−1,1}d}K of g : {−1,1}K×[d] is defined as

g(y) = g(y) ,

where its lifted argument y satisfies yi,r = y(i,r), i ∈ K,r ∈ [d].
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We define Ω′1 = Ω1,Ω
′
t = Ωd

t for t = 2,3,4, let y(t) be the lifted version of y(t), and T the lifted
analogue of a distribution T. Additionally, as we wish to claim simultaneously the lemmas for all
Γ⊆ [4], |Γ| ≥ 2, let hA for a subset A⊆ [4] denote

f [1∈A]
∏

t∈A\1
g(t) .

Proof of Lemma 2.22: Introducing projected noise for g functions

Proof. Let

D1 = T
d-proj-1
0 , Dr = T(r)

γ̄
Dr−1, r = 2,3,4 .

We note that DK
r is indeed the lifted analogue of T′1. Consequently, the lemma is proved by bounding the

respective differences of expectations ∣∣ψΓ(D
K
r )−ψΓ(D

K
r−1)

∣∣
for r = 2,3,4.

Working out the notation, for r = 2,3,4,∣∣ψΓ(D
K
r−1)−ψΓ(D

K
r )
∣∣= ∣∣∣EDK

r−1

[
g(r)hΓ\r

]
− EDK

r

[
g(r)hΓ\r

]∣∣∣
=

∣∣∣∣EDK
r−1

[
g(r)hΓ\r

]
− E

(T(r)
γ̄

Dr−1)K

[
g(r)hΓ\r

]∣∣∣∣= ∣∣∣EDK
r−1

[
g(r)hΓ\r

]
− EDK

r−1

[
(Tγ̄ g(r))hΓ\r

]∣∣∣ . (2.8)

This is the setting of Theorem 2.25.
By Lemma 2.9 and symmetry, the correlation ρ(Ω1×∏t 6=1,r Ωd

t ,Ω
d
r ;Td-proj-1

0 ), which equals ρ(Ω1×
∏t 6=1,r Ω′t ,Ω

′
r;D1), is bounded by

ρ0 ,
√

1/2+1/2(1−δ 2/8)2 .

As noise can only decrease correlation, the same bound holds for Dr−1. Similarly, this is a bound on any
subset of sample spaces in the case Γ 6= [4].

For r = 2,3,4, if r /∈ Γ, the difference (2.8) is 0. Otherwise, we bound using Theorem 2.25 with
ρ ≤ ρ0. That is, (2.8)≤ supk ρk

0(1− γ̄k) . In conclusion,

∣∣ψΓ(T
′
0)−ψΓ(T

′
1)
∣∣= ∣∣ψΓ(D

K
1 )−ψΓ(D

k
4)
∣∣≤ 4

∑
t=2

∣∣ψΓ(D
K
t−1)−ψΓ(D

K
t )
∣∣≤ 3sup

k
ρ

k
0(1− γ̄

k) .

Proof of Lemma 2.23: Introducing noise for the f function

Proof. By Lemma 2.10,

ρ(Ω1,Ω
d
2×Ω

d
3×Ω

d
4 ;Td-proj-1

1 )≤ ρ1 ,
√

1− γ3 .
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The same bound holds for ρ(Ω1,∏t∈Γ\1 Ω′t ;T
d-proj-1
1 ). Hence, using Theorem 2.25 again,

∣∣ψΓ(T
′
1)−ψΓ(T

′
2)
∣∣= ∣∣∣∣∣E(T2,3,4

γ̄
T

d-proj-1
0

)K

[
f hΓ\1

]
− E(

T2,3,4
γ̄ (T1

η̄ T0)
d-proj-1

)K

[
f hΓ\r

]∣∣∣∣∣
=

∣∣∣∣∣E(T2,3,4
γ̄

T
d-proj-1
0

)K

[
f hΓ\r

]
− E(

T2,3,4
γ̄

T
d-proj-1
0

)K

[
(Tη̄ f )hΓ\r

]∣∣∣∣∣≤ sup
k

ρ
k
1(1− η̄

k) .

Proof of Lemma 2.24: From projected noise to independent noise

Proof. The lemma follows immediately from Theorem 2.21. However, somewhat confusingly at this
point, we have defined the functions g so that the sample spaces are correlated by the projection π(i,r) = i.
To utilize the theorem, we unravel the definition from the protocol:

g(y), Eb∼{0,1}[b⊕gv(b⊕y◦ π̄)] ,

where, for π , π{u,v}, π̄ : K× [d]↔ K× [d] is an arbitrary bijection such that if (i′,r′) = π̄(i,r), then
π(i) = i′. Define

g′v(y) = Eb∼{0,1}[b⊕gv(b⊕y)]

and let T′2
π and T′3

π permute coordinates of g′ in accordance with an arbitrary bijection π̄ consistent with
π . Also, for F ⊆ [4], let

hv
F = f [1∈F ]

∏
t∈F\1

g′v(y(t)) .

We recall the definition of the distributions

T′2 ,
(

T2,3,4
γ̄

(
T1

η̄ T0
)d-proj-1

)K
and T′3 ,

((
T2,3,4

γ̄
T1

η̄ T0

)d-proj-1
)K

.

The target difference equals

∣∣ψΓ(T
′
2)−ψΓ(T

′
3)
∣∣= ∣∣∣∣Eu,v,T′2

π{u,v}

[
f hv

Γ\1

]
− E

u,v,T′3
π{u,v}

[
f hv

Γ\1

]∣∣∣∣ . (2.9)

We apply Theorem 2.21 up to three times, once for each of the coordinates appearing in Γ. Define Rt

for t ∈ [m] as follows and note that R1 corresponds to T′2 and Rm to T′3,

Rt ,

(
Tt+1,...,m

γ̄t+1,...,γ̄m

(
T1,2,...,t

η̄ ,γ̄2,...,γ̄t
T0

)d-proj-1
)K

.

Formally, when applying the theorem to coordinate t ∈ Γ\{1}, we have A = {1},B = {t},C = Γ\
{1, t},γ = γ , and the distributions equal P= Rt−1 and R= Rt . The respective differences in expectation
hence yield a bound on the difference in expectation between T′2 = R2 and T′3 = Rm. According to
the theorem, the difference in expectation for each application is bounded by 2

√
ξ + 2γ̄J

t . In effect,
(2.9)≤ 6

√
ξ +6γ̄J

2 .
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2.5 Proof of Proposition 2.7: Bounding ET′3
[∏g]

We limit ourselves to the hardest case: Γ = {2,3,4} which corresponds to bounding

Eπ,T′3

[
g(y(2))g(y(3))g(y(4))

]
.

The other cases are bounded by the same line of argument which we comment on following the proof of
the Γ = {2,3,4} case.

Intuitively, due to noise the expression can be arbitrarily well approximated by low-degree expansions
of g. Because of smoothness, low-degree terms in the Efron-Stein decomposition project to unique
coordinates with probability arbitrarily close to one. For terms of functions with such projections, the
expectation is the same for the distribution which draws arguments independently for every coordinate,
as the one which draws x and adheres to the projections. Finally analyzing a distribution which is
independent for every coordinate, we can simply bound by the expectation by the unprojected correlation
between the three spaces which was shown in Lemma 2.11 to be at most

√
δ . We recall again that T′3 is a

noised version of T′0 and noise can not increase correlation.
In this subsection, let k be the largest integer less than J/2 where J is one of the smoothness parameters

of our protocol. Recall that

T′3 , T
d-proj-1
3

⊗K
and T′′3 , T⊗L

3 .

In the following, g denotes g′v as defined in the previous subsection.

Noised to low-degree functions

Lemma 2.27. Let D= T′3 or T′′3 . Then,∣∣∣ED

[
g(y(2))g(y(3))g(y(4))

]
− ED

[
g≤k(y(2))g≤k(y(3))g≤2k(y(4))

]∣∣∣≤ 2γ̄
k .

Proof. Let us denote by gt = g(y(t)). Clearly,

E[g2g3g4] = E
[
(g≤k

2 +g>k
2 )(g≤k

3 +g>k
3 )g4

]
and so, ∣∣∣E[g2g3g4]− E

[
g≤k

2 g≤k
3 g4

]∣∣∣≤ ∣∣∣E[g>k
2 g3g4

]∣∣∣+ ∣∣∣E[g≤k
2 g>k

3 g4

]∣∣∣ .
We bound both terms on the RHS through Hölder’s inequality. Let h2 ∈ {g≤k

2 ,g>k
2 } and h3 ∈ {g3,g>k

3 }.
Then,

|E[h2h3g4]| ≤ ||h2||D,2||h3||D,2||g4||D,∞ .

As
∣∣∣∣g≤k

∣∣∣∣
2,
∣∣∣∣g>k

∣∣∣∣
2≤ ||g||2 for any function g with an Efron-Stein decomposition, and ||g||D,p≤ ||g||T′0,p =

1 for any integer p≥ 1, all three norms are bounded by 1. Additionally, if h2 = g>k
2 , then

||h2||D,2 = ∑
S : |S|>k

ED

[
g2

S
]
= ∑

S : |S|>k
γ̄
|S|ET′0

[
g2

S
]
≤max{γ̄ |S| : |S| ≥ k}∑

S
E
[
g2

S
]
≤ γ̄

k .
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Similarly, if h3 = g>k
3 , then ||h3||D,2 ≤ γ̄k. Hence,∣∣∣E[g2g3g4]− E

[
g≤k

2 g≤k
3 g4

]∣∣∣≤ γ̄
k + γ̄

k ≤ 2γ̄
k .

To complete the lemma, we note that

E
[
g≤k

2 g≤k
3 g4

]
= E

[
g≤k

2 g≤k
3 g≤2k

4

]
+ E

[
g≤k

2 g≤k
3 g>2k

4

]
,

where the latter term equals

∑
S,T,U⊆L

|S|,|T |≤k;|U |>2k

E
[
gS(y(2))gT (y(3))gU(y(4))

]
= ∑

S,T,U⊆L
|S|,|T |≤k;|U |>2k

E
[
gS(y(2))gT (y(3))Ey(4)S∪T | y(2)S y(3)T

[
E
[
gU(y(4)) |y(4)S∪T

]]]
which is 0 by properties of the Efron-Stein decomposition of g as U−S−T is non-empty.

Smooth low-degree to shattered functions via hypercontractivity The goal in this paragraph is to
show that for smooth projections, low-degree functions essentially behave as their shattered parts. To
this end, we employ the following well-known corollary of the Hypercontractivity Theorem, Lemma 1.7.

Lemma 2.28. Let D= T′3 or T′′3 . Then,∣∣∣Eπ,Dπ̄

[
g≤k

2 g≤k
3 g≤2k

4 −g2
�π≤kg3

�π≤kg4
�π≤2k

]∣∣∣≤√ξ 31.5k+1.

Proof. It suffices to bound the terms∣∣∣E[g≤k
2 g≤k

3 g≤2k
4 −g2

�π≤kg≤k
3 g≤2k

4

]∣∣∣ ,∣∣∣E[g2
�π≤kg≤k

3 g≤2k
4 −g2

�π≤kg3
�π≤kg≤2k

4

]∣∣∣,and∣∣∣E[g2
�π≤kg3

�π≤kg≤2k
4 −g2

�π≤kg3
�π≤kg4

�π≤2k
]∣∣∣ ,

where g�π is the shattered part of g with respect to π , as defined in the preliminaries.
Assuming 2k ≤ J, Lemma 2.20 bounds the first difference by√

ξ Var
[
g≤k

2

]∣∣∣∣∣∣g≤k
3 g≤k

4

∣∣∣∣∣∣
2
.

Cauchy-Schwarz and using Var
[
g≤k

2

]
=
∣∣∣∣∣∣g≤k

2

∣∣∣∣∣∣2
2

yields the further bound√
ξ
∣∣∣∣g≤k

∣∣∣∣
π,Dπ̄ ,2

∣∣∣∣g≤k
∣∣∣∣

π,Dπ̄ ,4

∣∣∣∣g≤2k
∣∣∣∣

π,Dπ̄ ,4 .

Employing Lemma 1.7 to the two l4-norms, the first term is at most∣∣∣E[g≤k
2 g≤k

3 g≤2k
4 −g2

�π≤kg≤k
3 g≤2k

4

]∣∣∣≤√ξ 31.5k
∣∣∣∣g≤k

∣∣∣∣2
π,Dπ̄ ,2

∣∣∣∣g≤2k
∣∣∣∣

π,Dπ̄ ,2 ≤ 31.5k
√

ξ .

The remaining two terms follow the same argument for a total error of

31.5k
√

ξ +31.5k
√

ξ +3k
√

ξ ≤ 31.5k+1
√

ξ .
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Shattered functions to independent coordinates

Lemma 2.29. With respect to any projection π , the product of the shattered parts of the functions g2,g3,
and g4 have the same expectation for T′3 as if the coordinates in L were drawn independently. Formally,

ET′3

[
g2
�π≤kg3

�π≤kg4
�π≤2k

]
= ET′′3

[
g2
�π≤kg3

�π≤kg4
�π≤2k

]
.

Proof. Consider the Efron-Stein decompositions of the functions in the two terms. Let Θ denote the set

{(S,T,U)⊆ L3 : |S|, |T | ≤ k; |U | ≤ 2k; |π(S)|= |S|, |π(T )|= |T |, |π(U)|= |U |} ,

i. e., the triplets of sets which are shattered and satisfy the degree restrictions; that is, g2
�π≤kg3

�π≤kg4
�π≤2k

equals

∑
(S,T,U)∈Θ

gS(y(2))gT (y(3))gU(y(3)) .

We argue that in fact each term, indexed by (S,T,U) ∈ Θ, coincides in expectation for the two
distributions. We note that since the terms are shattered, if |π(S+T +U)|< |S+T +U |, then one of the
sets S, T , and U must contain a unique element and the term evaluates to 0 in expectation. Hence, we
only need to consider the case when for each i ∈ K, there is at most one j ∈ S+T +U projecting to i.
As the two distributions have identical marginals, the Efron-Stein decompositions are identical, and it
suffices to prove that the distribution over relevant argument is the same for the two distributions. This
should be intuitively clear but we show it formally for completeness.

By linearity of expectation and properties of the decomposition, it suffices to show that

PT′3

(
y(2)S ,y(3)T ,y(4)U

)
= PT′′3

(
y(2)S ,y(3)T ,y(4)U

)
for any (y(2)S ,y(3)T ,y(4)U ) ∈ΩS

2×ΩT
3 ×ΩU

4 such that (S,T,U) ∈Θ. With respect to the distribution T3, let
X ,Y (2),Y (3), and Y (4) denote the random variables taking values in Ω1, . . . ,Ω4, respectively. Furthermore,
define A j as the event “Y (2) = y(2)j if j ∈ S, . . . ,Y (4) = y(4)j if j ∈U .” Then,

PT′3

(
y(2)S ,y(3)T ,y(4)U

)
= Exπ(S∪T∪U)∼T′3

[
PT′3

(
y(2)S ,y(3)T ,y(4)U |xπ(S∪T∪U)

)]
= ∏

i∈π(S∪T∪U)
∑
xi

PT3(X = xi) ∏
j∈S∪T∪U :π( j)=i

PT3(A j |X = xi) . (2.10)

We recall that the sets (S,T,U) ∈Θ are shattered. Hence, for any i ∈ π(S∪T ∪U), there is exactly one
j ∈ S∪T ∪U such that π( j) = i. It follows that (2.10) equals

∏
i∈π(S∪T∪U)

∏
j∈S∪T∪U :π( j)=i

∑
xi

PT3(X = xi)PT3(A j |X = xi)

= ∏
j∈S∪T∪U

∑
xπ( j)

PT3

(
X = xπ( j)

)
PT3

(
A j |X = xπ( j)

)
= ∏

j∈S∪T∪U
P(A j) = PT′′3

(
y(2)S ,y(3)T ,y(4)U

)
.
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Putting it together

Proof of Proposition 2.7. Using the three preceding lemmas and J/2−1≤ k ≤ J/2,∣∣∣ET′3

[
g(y(2))g(y(3))g(y(4))

]
− ET′′3

[
g�π≤k

(y(2))g�π≤k
(y(3))g�π≤2k

(y(4))
]∣∣∣≤ 2γ̄

J/2−1 +33J/4+1
√

ξ

and∣∣∣ET′′3

[
g(y(2))g(y(3))g(y(4))

]
− ET′′3

[
g�π≤k

(y(2))g�π≤k
(y(3))g�π≤2k

(y(4))
]∣∣∣≤ 2γ̄

J/2−1 +33J/4+1
√

ξ .

In effect,∣∣∣ET′3

[
g(y(2))g(y(3))g(y(4))

]∣∣∣≤ ∣∣∣ET′′3

[
g(y(2))g(y(3))g(y(4))

]∣∣∣+4γ̄
J/2−1 +6 ·33J/4

√
ξ .

It remains to bound ∣∣∣ET′′3

[
g(y(2))g(y(3))g(y(4))

]∣∣∣ . (2.11)

By the definition of correlation,

(2.11)≤ ρ(ΩL
2 ,Ω

L
3×Ω

L
4 ; T′′3 )

∣∣∣∣∣∣g(y(2))∣∣∣∣∣∣
T′′3 ,2

∣∣∣∣∣∣g(y(3))g(y(4))∣∣∣∣∣∣
T′′3 ,2
≤ ρ(ΩL

2 ,Ω
L
3×Ω

L
4 ; T′′3 ) .

For the distribution T′′3 , the coordinates L are independent and so by Lemma 2.15,

ρ(ΩL
2 ,Ω

L
3×Ω

L
4 ; T′′3 )≤max

j∈L
ρ(Ω2, j,Ω3, j×Ω4, j; T′′3 ) = ρ(Ω2,Ω3×Ω4; T3) .

In Lemma 2.11, we bounded this correlation by
√

δ .
Consequently, ∣∣∣ET′3

[
g(y(2))g(y(3))g(y(4))

]∣∣∣≤ 4γ̄
J/2−1 +2 ·33J/4+1

√
ξ +
√

δ .

Regarding terms Γ ( {2,3,4}, |Γ| ≥ 2, we note that the same argument works. The corresponding
bounds on high-degree terms only produce fewer terms and similarly with the step from low-degree
terms to shattered low-degree terms; the argument that the expectation is the same as for independent
coordinates is identical and finally the correlation between two sample spaces is no greater than between
three.

2.6 Proof of Proposition 2.8: Bounding ET′3
[ f ∏g]

In this subsection, we bound mixed, i. e., E[ f ∏g], terms. Our proof follows O’Donnell and Wu’s [22]
coordinate-wise distribution-substitution method although we analyze it immediately via Efron-Stein
decompositions and avoid dependencies on d.
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Proof of Proposition 2.8

Proof. Fix E = {u,v} and π which yields f and g. We show for for 1 ∈ Γ⊆ [4], |Γ| ≥ 3 that

ψΓ(T
′
3)≤ 8γ

−1/2
√

∑
(i, j)∈π

Inf(η̄)
i ( f )Inf(γ̄)j (g) .

For simplicity, we limit ourselves to the hardest case: Γ = [4] which corresponds to

ET′3

[
f (x)g(y(2))g(y(3))g(y(4))

]
and the other cases are briefly addressed following this proof. Hereafter, let f and g, respectively, denote
Tη̄ f and Tγ̄ g and we instead analyze

ET′0

[
f (x)g(y(2))g(y(3))g(y(4))

]
.

Since any one string y(t) is independent of x for the test distribution T′0, the Efron-Stein decomposition
of g with respect to L has the standard properties from Lemma 1.5. Furthermore, as the marginals coincide,
the decomposition is the same for the three occurrences of g. Hence,

E
[

f ∏g
]
= ∑

S,~T

E[ fSgT2gT3gT4 ] ,

where the arguments have been dropped as they are implicit from the subscripts.
Let H′

δ
be the distribution which samples x and (y(2),y(3),y(4)) independently from T′0. Our goal is

to show ∣∣∣∣∣∣∑S,~T ET′0
[ fSgT2gT3gT4 ]− EH′

δ
[ fSgT2gT3gT4 ]

∣∣∣∣∣∣≤ 8γ
−1/2

√
∑

(i, j)∈π

Infi( f )Inf j(g) .

This would complete the proof as EH′
δ
[ fSgT2gT3gT4 ] = ET′0

[ f ] ET′0
[∏g] = 0.

We note first that for any term (S,~T ) with S= /0, the expectations are identical and we have a difference
of 0. Similarly, any term (S,~T ) with

⋃
Tt = /0 corresponds to E[ fSg /0g /0g /0] = 0. For the remaining terms,

the following are well defined:

i∗(S,~T ) = max{i ∈ S}, j∗(S,~T ) = min{ j ∈
⋃

Tt | π( j) = i∗},W (S,~T ) = {t | j∗ ∈ Tt} .

We further note that any term with |W (S,~T )|= 1 evaluates to 0 by the assumption that any single string
y(t) is independent of x and so by the properties of the Efron-Stein decomposition of g, E[ fS ∏gTt ] = 0.
Furthermore, for any remaining term, the expectation over H′

δ
is 0 as E[ fS] = 0 for any S.

Hence, it remains to bound∣∣∣∣∣∣∣ ∑
(i∗, j∗)∈π

∑
W⊆{2,3,4}
|W |≥2

∑
S,~T

{ET′0
[ fSgT2gT3gT4 ] | i∗(S,~T ) = i, j∗(S,~T ) = j,W (S,~T ) =W}

∣∣∣∣∣∣∣ . (2.12)
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We bound the inner sums separately. Fix arbitrary i∗, j∗, and W . Define J∗ as

{ j ∈ L | π( j) 6= i∨ j ≤ j∗} .

Let J∗1 and J∗0 be all subsets of J∗ containing, respectively not containing, j∗. The reader can convince
eirself that the indices (S,~T ) which satisfy the conditions on i∗, j∗, and W are precisely those where
S is a subset of [i∗] containing i∗ and each Tt is a member of J∗1 or J∗0 depending on whether t ∈W .
Consequently, we rewrite the inner sum as

∑
S,~T

{ET′0
[ fSgT2gT3gT4 ] | i∗(S,~T ) = i∗, j∗(S,~T ) = j∗,W (S,~T ) =W}

= ∑{ET′0
[ fSgT2gT3gT4 ] | i∗ ∈ S⊆ [i∗],Tt ∈ J∗[t∈W ]}= ET′0

 ∑
i∗∈S⊆[i∗]

fS ∏
t

∑
Tt∈J∗[t∈W ]

gTt

 .
Before we continue, consider an arbitrary function h with Efron-Stein decomposition {hS}S⊆[n]. By

Lemma 1.10,
∑

S⊆T
hS(x) = E[h(X) |XT = xT ] .

Consequently, if h→ [−1,1], then
∣∣∑S⊆T hS

∣∣≤ 1. Similarly,∣∣∣∣∣ ∑
i∈S⊆T

hS

∣∣∣∣∣≤
∣∣∣∣∣∑S⊆T

hS

∣∣∣∣∣+
∣∣∣∣∣ ∑
S⊆T−{i}

hS

∣∣∣∣∣≤ 2 .

We also note that ∣∣∣∣∣
∣∣∣∣∣∑S∈ShS

∣∣∣∣∣
∣∣∣∣∣
2

= E

(∑
S∈S

hS

)2
1/2

=

(
∑
S∈S

E
[
h2

S
])1/2

.

Additionally, if S⊆ S′, then clearly

∑
S∈S

E
[
h2

S
]
≤ ∑

S∈S′
E
[
h2

S
]
.

Finally, by the definition of influences, ∑S3i E
[
h2

S

]
= Infi(h).

From our preceding discussions, we consider an arbitrary W of cardinality at least 2. Consequently,
let w1,w2 be two arbitrary members of W and w3 be the unique remaining element in {2,3,4}. Applying
Hölder’s inequality to the last expression, we receive the bound∣∣∣∣∣∣ET′0

 ∑
i∗∈S⊆[i∗]

fS ∏
t

∑
Tt∈J∗[t∈W ]

gTt

∣∣∣∣∣∣=
∣∣∣∣∣∣ET′0

( ∑
i∗∈S⊆[i∗]

fS ∑
j∗∈Tw1⊆J∗

gTw1

)(
∑

j∗∈Tw2⊆J∗
gTw2

) ∑
Tt∈J∗[w3∈W ]

gTw3

∣∣∣∣∣∣
≤

∣∣∣∣∣
∣∣∣∣∣ ∑
i∗∈S⊆[i∗]

fS ∑
j∗∈Tw1⊆J∗

gTw1

∣∣∣∣∣
∣∣∣∣∣
2

∣∣∣∣∣
∣∣∣∣∣ ∑

j∗∈Tw2⊆J∗
gTw2

∣∣∣∣∣
∣∣∣∣∣
2

∣∣∣∣∣∣
∣∣∣∣∣∣ ∑
Tw3∈J

∗
[w3∈W ]

gTw3

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

.
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By independence between x and y(w1), the first factor is bounded by∣∣∣∣∣
∣∣∣∣∣ ∑
i∗∈S⊆[i∗]

fS

∣∣∣∣∣
∣∣∣∣∣
2

∣∣∣∣∣
∣∣∣∣∣ ∑

j∗∈Tw1⊆J∗
gTw1

∣∣∣∣∣
∣∣∣∣∣
2

.

The three two-norms are respectively bounded by Infi∗( f ), Inf j∗(g), and Inf j∗(g). The third factor in the
last expression is bounded by ∏t 6=w1,w2 2||g||

∞
≤ 2 following the preceding discussion and noting that J∗0

are the subsets of J∗−{ j∗} and J∗1 are the sets T such that j∗ ∈ T ⊆ J∗. Hence,∣∣∣∣∣
∣∣∣∣∣ ∑
i∗∈S⊆[i∗]

fS ∑
j∗∈Tw1⊆J∗

gTw1

∣∣∣∣∣
∣∣∣∣∣
2

∣∣∣∣∣
∣∣∣∣∣ ∑

j∗∈Tw2⊆J∗
gTw2

∣∣∣∣∣
∣∣∣∣∣
2

∣∣∣∣∣∣
∣∣∣∣∣∣ ∑
Tw3∈J

∗
[w3∈W ]

gTw3

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

≤ 2
√

Infi∗( f )Inf j∗(g)Inf j∗(g) .

Summing over the choices of i∗, j∗,W , we get a bound on (2.12):

∑
(i∗, j∗)∈π

∑
W,|W |≥2

Ew1 6=w2∈W

[
2
√

Infi∗( f )Inf j∗(g)Inf j∗(g)
]
≤ 8 ∑

(i, j)∈π

√
Infi( f )Inf j(g)Inf j(g) . (2.13)

Using Cauchy-Schwarz over (i, j), noting that π is a projection, (2.13) is bounded by

8

(
∑

(i, j)∈π

Infi( f )Inf j(g)

)1/2(
∑

j
Inf j(g)

)1/2

. (2.14)

Recalling that we set f = Tη̄ f and g = Tγ̄ g, these are indeed noisy influences and consequently the
total influence of g is at most γ−1. That is, returning to our original definition,

(2.14)≤ 8γ
−1/2

√
∑

(i, j)∈π

Inf(η̄)
i ( f )Inf(γ̄)j (g) .

We have bounded the value of the Fourier term of P where all four arguments appear. For other
mixed terms E[ f ∏g], the same argument applies where one for arguments which do not appear can use
the constant-one function instead. The fact that f appears, has expectation 0, and that the constant-one
function has no influences offers the same upper bound.

3 Predicates of greater width

In the remainder of this treatise, we generalize the result of the preceding sections to predicates of width
greater than four. The majority of the argument generalizes straightforwardly and is simply included for
the sake of completeness. The first fundamental difference is that we use a test distribution that has a
certain stronger independence property which is used to bound shattered unmixed terms. The second
difference is that we prove and a stronger invariance-style theorem which we employ to directly bound
mixed, i. e., E[ f ∏g], terms.

Formally, we establish the following theorem.
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Theorem 3.1. Any predicate P⊆ {0,1}m,m≥ 4, strictly containing odd or even Parity is approximation
resistant for satisfiable instances.

Without loss of generality, we merely show for m≥ 4 the approximation resistance of the predicate
containing all length-m binary strings of odd parity as well as the all-zero string. All other cases can
be reduced from this setting; formally, supposing P′ ⊆ {0,1}m contains either odd or even Parity plus a
single disjoint element r ∈ {0,1}m, one reduces constraints “(x1 + c1, . . . ,xm + cm) ∈ P” to “(x1 + c1 +
r1, . . . ,xm + cm + rm) ∈ P′” where addition is taken in F2. One can verify that the former constraint is
satisfied by an assignment if and only if the latter one is.

3.1 Generalized distribution

To bound unmixed terms—i. e., terms of the form E[∏g]—we use a test distribution which satisfies a
certain independence condition. More specifically, over m number of {−1,1}-valued variables, which
we call bits, we would like to have uniform marginals; the all-ones outcome to have strictly positive
probability; and finally, conditioned on the outcome of the first bit and any partition (A,{2, . . . ,m}\A) of
the remaining m−1 bits, independence among the variables indexed either by A or by {2, . . . ,m}\A.

In the following, we show that such a distribution indeed exists. To begin with, we argue that for an
odd number m of bits, there is an (m−1)/2-wise independent distribution with uniform marginals and
weight on the all-ones outcome. This allows one to construct a distribution as follows: for even m, one
can have (m/2−1)-wise independence, conditioned on the first bit; and for odd m, in effect, one can have
independence among bits in at least one set of an arbitrary partition of the second to last bit, conditioned on
the first. In particular, the distributions µ defined below satisfies for every A]A′ ⊆ {2, . . . ,m};A,A′ 6= /0,

Ex1∼µ

[
Eµ

[
∏
i∈A

xi

∣∣∣∣∣ x1

]
Eµ

[
∏
i∈A′

xi

∣∣∣∣∣ x1

]]
= 0 . (3.1)

Definition 3.2. Let Pm ⊆ {−1,1}m consist of all vectors containing an odd number of −1’s as well as
the all-ones vector.

Lemma 3.3. For odd m≥ 1, there exists an (m−1)/2-wise independent distribution on Pm with uniform
marginals and strictly positive weight on the all-ones outcome.

Proof. Let f : {−1,1}m→ R be an arbitrary function with Fourier expansion f (x) = ∑S⊆[m] f̂S ∏i∈S xi.
The intention is to show that there is a non-zero function f with support Pm satisfying (m−1)/2-wise
independence, having uniform marginals, and being non-zero for the all-ones outcome 1. From this, one
can construct a probability distribution with the desired properties by suitably adding to f a multiple of
the (m−1)-wise independent distribution D on vectors of odd parity and scaling appropriately. More
formally, without loss of generality, suppose f (1)> 0 or else consider the function − f ; we can form the
claimed distribution by setting µ(x) = f ′(x)(∑x f ′(x))−1 where f ′(x) = f (x)+D(x) ·minx f (x) which
equals f (x) for x = 1, f (x)+minx f (x) for strings x of odd parity, and 0 otherwise.

We see the Fourier coefficients of f as variables and consider the homogeneous system of linear
equations imposed by the balance, independence, and support conditions. First, for every x ∈ {−1,1}m

of even parity not equal to the all-ones vector, we require f (x) = 0. Second, for every S⊆ [m] such that
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|S| ≤ (m−1)/2, we require f̂S = 0. Together, this yields a total of 2m−1 equations. As the system is
homogeneous and has 2m variables, there is an infinite number of choices of f satisfying the conditions
and in particular there is a non-zero solution.

Next, we argue that a non-zero choice of f implies that f ((1, . . . ,1)) 6= 0. Consider the polynomial
p of the average value of f (x) as a function of the number of −1’s in x times the {−1,1}-parity of x;
formally,

p(z) = Ex : |{i :xi=−1}|=z

[
f (x) ∏

i∈[m]

xi

]
= (−1)z Ex[ f (x)] .

As f is zero outside Pm, p(z) has (m−1)/2 zeroes at z = 2,4, . . . ,m−1. Next, we argue that p(z) is of
degree at most (m−1)/2 and in consequence p(0) 6= 0 for any non-zero p since a non-zero degree-d
polynomial can have at most d zeroes. To see that p has degree at most (m−1)/2 is straightforward as
f (x)∏i∈[m] xi does not depend on any terms involving m− (m−1)/2 or more variables. For the doubtful
reader, we complete this argument formally.

By definition of the Fourier expansion, f (x) = ∑S⊆[m] f̂S ∏i∈S xi = ∑S⊆[m] f̂S ∏i∈S(1− 2yi) where
yi = 1 if xi =−1 and yi = 0 if xi = 1. With the slight change of notation,

p(z) = Ey : ||y||1=z

[
∑

S⊆[m]

f̂[m]\S ∏
i∈S

(1−2yi)

]
= ∑

S⊆[m]

f̂[m]\S ∑
T⊆S

(−2)|T |Ey : ||y||1=z

[
∏
i∈T

yi

]

= ∑
S⊆[m]

f̂[m]\S ∑
T⊆S

(−2)|T |
(

m
|T |

)−1( z
|T |

)
. (3.2)

We recognize that if f̂S = 0 for |S| ≤ (m−1)/2, then f̂[m]\S = 0 for |S| ≥ (m−1)/2+1 and factors of zk

which appear in (3.2) satisfy k ≤ (m−1)/2. In effect, p has degree at most (m−1)/2.

Corollary 3.4. For even m≥ 2, there exists a distribution µ : Pm→ [0,1] with uniform marginals such
that the all-ones outcome has non-zero probability and, for x ∼ µ , conditioned on x1, the outcome of
(x2, . . . ,xm) is (m/2−1)-wise independent.

Proof. The distribution is formed by choosing x1 uniformly at random from {−1,1}. If −1, (x2, . . . ,xm)
is drawn from the uniform distribution over vectors of even parity, which is a (m−2)-wise independent
distribution with uniform marginals. If x1 is set to 1, (x2, . . . ,xm) is drawn according to the distribution
which exists due to Lemma 3.3 and has the desired properties.

Corollary 3.5. For m≥ 4 there exists a distribution µm on Pm satisfying (3.1).

Proof. For even m, the claim follows directly from Theorem 3.4. Consider an arbitrary odd m ≥ 5.
Again, we form a distribution by first sampling x1 uniformly at random from {−1,1}. If x1 =−1, draw
(x2, . . . ,xm) uniformly at random from vectors of even parity. If x1 = 1, set (x2, . . . ,xm) according to a
distribution which exists by Theorem 3.4. Since the distribution has uniform marginals, we claim that—
conditioned on x1—for any A]A′ ⊆ {2, . . . ,m};A,A′ 6= /0, either the variables (xi)i∈A or the variables
(xi)i∈A′ are independent and (3.1) is satisfied. To justify this; by Theorem 3.4, the variables (x3, . . . ,xm)
are ((m−1)/2−1)-wise independent conditioned on x2 and x1 = 1. Hence, either

1≤min{|A|, |A′|} ≤ ((m−1)/2−1)
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and one of the two sets have independent variables and satisfy (3.1), or

|A|= |A′|= (m−1)/2≥ 2 .

Without loss of generality, 2 ∈ A and 1≤ |A\{2}|< (m−1)/2 and hence the bits indexed by A\{2}
are independent conditioned on x2 and x1 = 1. In consequence the bits indexed by A are independent
conditioned on x1 = 1 and (3.1) is satisfied.

On the other hand, if x1 is set to−1, the bits (x2, . . . ,xm) are drawn from an (m−2)-wise independent
distribution conditioned on x1 =−1 and since |A|, |A′| ≤m−2, the bits are set independently and (3.1) is
satisfied.

3.2 Generalized protocol

Let D be the (m−1)-wise independent distribution which draws uniformly at random from Odd Parity,
and let E = µm be the distribution defined in the preceding subsection. The following PCP test is the
simple analogue of the arity-four case.

1. Pick a random vertex u ∈U and a random neighbor v ∈V . Sample π = π{u,v} as defined by the
SMOOTH LABEL COVER instance and let π̄ be an arbitrary bijection L↔ L such that for every
i, i′ ∈ K and r ∈ [d], π(i,r) = i′ iff ∃r′∈[d]π̄(i,r) = (i′,r′).

2. Sample random folding constants a,b ∼ {0,1}. Define fa(x) = a⊕ f u(a⊕ x) and gb(y) = b⊕
gv(b⊕y◦ π̄).

3. For each i ∈ K, independently choose xi uniformly at random from {0,1}. For each j ∈ L,
independently sample (xπ( j),y

(2)
j , . . . ,y(m)

j ) conditioned on xπ( j) from D with probability δ̄ and
otherwise E.

4. Accept iff
(

fa(x),gb(y(2)), . . . ,gb(y(m))
)
∈ P.

The completeness and soundness claims are as follows.

Lemma 3.6. The protocol has completeness 1. Said equivalently, if Val(I) = 1, then Val(RP(I)) = 1.

Proof. The distributions D and µm both have support Pm ⊆ P and hence setting functions to their dictators
corresponding to a satisfying LABEL COVER solution is always accepted.

Proposition 3.7. The protocol has soundness 2−m|P|+ εCSP. More specifically, if Val(I) ≤ εLC =
εLC(εCSP), then Val(RP(I))≤ 2−m|P|+ εCSP where εCSP(εLC)→ 0 as εLC→ 0.

Constants Let α = α(m) be the smallest strictly positive probability of any outcome of µm. Let
δ ≤ 2−2m−8ε2

CSP; define

ρ0 ,
√

1/2+1/2(1−α2δ 2/2)2
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and choose γ > 0 sufficiently close to 0 such that supk ρk
0(1− γ̄k)≤ 2−m−4εCSP/m.3 Again, define

ρ1 ,
√

1− γm−1

and choose η > 0 sufficiently close to 0 such that supk ρk
1(1− η̄k)≤ 2−m−4εCSP/m. Choose d2, . . . ,dm

such that
2γ̄

d2 ≤ 2−m−4/m and 2γ̄
dr(2r−m)∑

r−1
2 dt/2 ≤ 2−m−4/m .

Finally, choose the smoothness parameters J = dm, and ξ ≤ (2m)−mdm2−2m−10ε2
CSP.

3.2.1 Soundness of the generalized protocol

Notation Redefine the generalized distributions as follows. The primary difference to the width-four
case is that we use different degree constants d2 ≤ ·· · ≤ dm in our proofs when bounding unmixed E[∏g]
terms.

T0 = δ̄D+δE, T′0 = T
d-proj-1
0

⊗K
, T′1 =

(
T2,...,m

γ̄,...,γ̄ T
d-proj-1
0

)⊗K
,

T′2 =
(

T2,...,m
γ̄,...,γ̄

(
T1

η̄ T0
)d-proj-1

)⊗K
, T3 = T1

η̄ T2,...,m
γ̄,...,γ̄ T0, T′3 = T

d-proj-1
3

⊗K
, T′′3 = T3

⊗L .

The test distribution of the protocol corresponds to T′0. Intuitively, T′1 is the distribution where projected
noise is applied to y(2), . . . ,y(m), i. e., all coordinates which share projection are changed by noise
simultaneously. T′2 is the same distribution but with noise applied also to x. We note that projected and non-
projected (independent) noise are the same for x as it is defined on the smaller table. T′3 is the distribution
all strings—x,y(2), . . . ,y(m)—all have independent noise. Finally, T′′3 is the same as T′3, we have noise
for all strings, but x is defined on {−1,1}L and for each j ∈ L, the tuple (x j,y

(2)
j , . . . ,y(m)

j ) is drawn
independently; we note that this distribution will only be used for analyzing terms where x does not appear
and equivalently one can see the strings (y(t))t as being drawn independent of x. As for the width-four
case, we define f = Ea[ fa] and g = Eb[gb]. Let the queries be q1 = f (x),q2 = g(y(2)), . . . ,qm = g(y(m)).
For an arbitrary Γ 6= /0 and distribution R, let us denote by ψΓ(R) = EE,R[χΓ(q)]. Conceptually, we refer
again to these terms as unmixed terms—E[∏g]—or mixed terms—E[ f ∏g]—for zero or more functions
g.

As in preceding proofs, the aim is to show the following four generalized propositions from which
the soundness follows.

Proposition 3.8. ψΓ(T
′
0) = 0 for /0 6= Γ⊆ [m], |Γ∩{2, . . . ,m}| ≤ 1.

Proof. As the test distribution has uniform marginals, ψ{t}(T
′
0) = EE,T′0

[qt ] which equals EE[E[ f ]]
or EE[E[g]], both of which are 0 due to folding. Suppose Γ = {1, t}. Then ψΓ(T

′
0) = EE,T′0

[ f g] =
E[ f ] E[g] = 0 since y(t) is uniform and independent of x by Lemma 2.4, subsequently folding yields
expectation 0.

We note that the constants ρ0 and ρ1 appearing in the proposition are correlation bounds appearing in
the proofs and are bounded away from 1 depending only on δ , γ , and m.

3In particular, setting γ̄ = ρ
2−m−4εCSP/m
0 suffices.
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Proposition 3.9.∣∣ψΓ(T
′
0)−ψΓ(T

′
3)
∣∣≤ (m−1)sup

k≥0
ρ

k
0(1− γ̄

k)+ sup
k≥0

ρ
k
1(1− η̄

k)+2m
√

ξ +2mγ̄
J ≤ εCSP/2−m−2

for any Γ⊆ [m].

Proof. Appears in Section 3.4.

Proposition 3.10.

∣∣ψΓ(T
′
3)
∣∣≤ 2γ̄

d2 +2
m

∑
r=3

γ̄
dr(2r−5)∑

r−1
t=2 dt/2 +2(m−1)(2m−5)∑

m
t=2 dt/2

√
ξ +
√

δ ≤ εCSP/2−m−2

for 1 /∈ Γ⊆ [m], |Γ| ≥ 2.

Proof. Appears in Section 3.5.

Proposition 3.11. |ψΓ(T
′
3)| ≤ 22m

√
γ−1 EE

[
∑(i, j)∈π Inf(η̄)

i ( f )Inf(γ̄)j (g)
]

for 1 ∈ Γ⊆ [m], |Γ| ≥ 3.

Proof. Appears in Section 3.7.

3.3 Generalized correlation bounds

In this subsection, we establish generalized bounds on the correlation between strings in our test distribu-
tion. For preliminaries, we refer to the reader to Section 2.3.

The correlation bounds we aim to establish for the test distribution are the following analogues of
the width-four case. The first lemma shows that for our test distribution T0, the correlation between
arguments to g functions are bounded away from 1 independent of d. This in turn will enable us to
introduce projected noise for g functions.

Lemma 3.12. For any 2≤ r ≤ m,

ρ

(
Ω1×Ω

d
−1,−r,Ω

d
r ; Td-proj-1

0

)
≤

√
1
2
+

1
2

(
1− α2δ 2

2

)2

,

where α = α(m) is the smallest strictly positive probability of any outcome for the distribution E= µm

as defined in Section 3.1.

Proof. Lemma 2.4 implies that Ωd
m is independent of Ω1. Applying Theorem 2.19 with A = {1},B =

{2, . . . ,m}\{r},C = {r}, we get

ρ

(
Ω1×Ω

d
−1,−r,Ω

d
r ; Td-proj-1

0

)
≤ ρ(Ω−1,−r,Ωr | Ω1; T0)

which by definition equals Eω1

[
ρ(Ω−1,−r,Ωr; T0 | ω1)

2
]1/2.
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Switching to {0,1} notation again, to establish that the considered correlation is bounded away from
1, it suffices that the conditioned correlation is bounded away from 1 for at least one of the cases ω1 = 0
and ω1 = 1. This is precisely what we do, we bound the latter by 1 and find a smaller bound for the case
ω1 = 0.

As for the width-four case, we employ Lemma 2.16. The bipartite graph in question has left
vertices Ω−1,−r, right vertices Ωr, and an edge {~ω−1,−r,ωr} whenever (0, ~ω−1,−r,ωr) has strictly positive
probability; Lemma 2.16 states that if this graph connected, the correlation is bounded away from 1. To
be specific, the correlation is at most 1−α2/2 where α is the smallest strictly positive probability of any
outcome. This graph is indeed connected. From ωr = 1, D connects to any ~ω−1,−r of even parity while
from ωr = 0, D connects to any ~ω−1,−r of odd parity as well as the even-parity outcome ~ω−1,−r =~0 due
to the all-zero outcome of E.

Defined above, let α = α(m) be the minimum non-zero probability of any outcome of E. The
minimum strictly positive probability of any outcome for the distribution T0 = δ̄D+δE conditioned on
ω1 = 0 is then given by E as δ is close to 0, i. e., the minimum probability of any atom of δ̄D+δE is
α(m)δ . This implies that ρ(Ω−1,−r,Ωr; T0 | ω1 = 0)≤ 1−α(m)2δ 2/2 and, as desired,

ρ

(
Ω1×Ω

d
−1,−r,Ω

d
r ; Td-proj-1

0

)
≤

√
1
2
·12 +

1
2

(
1− α2δ 2

2

)2

.

Along similar lines to the argument in Section 2.3, the second lemma implies that after we have
introduced projected noise for all g functions, the argument to f has correlation bounded away from 1
independent of d. Again, this enables us to introduce noise for f .

Lemma 3.13.
ρ

(
Ω1,Ω

d
2×·· ·×Ω

d
m; T2,...,m

γ̄,...,γ̄ T
d-proj-1
0

)
≤
√

1− γm−1 .

Proof. We recall that the considered distribution is T2,...,m
γ̄,...,γ̄ T

d-proj-1
0 . With probability ∏

m
t=2 γ , the outcome

of Ωd
2 × ·· · ×Ωd

m is independent of Ω1 and the correlation is 0. Denote this event by A and let the
correlations of the two possibilities be, respectively, ρA = 0 and ρĀ ≤ 1. Then,

ρ

(
Ω1,Ω

d
2×·· ·×Ω

d
m; T2,...,m

γ̄,...,γ̄ T
d-proj-1
0

)
≤
√

P(A)ρ2
A +P

(
Ā
)

ρ2
Ā

≤

√√√√ m

∏
t=2

γ ·02 +

(
1−

m

∏
t=2

γ

)
·12 =

√
1− γm−1 .

The third and final lemma is used to show that a product of g-functions is always small if we do
not have projections. This will be the final step when we bound terms of the form E[∏g] after we have
argued that the product behaves roughly as though there were unique projections.

Lemma 3.14.
ρ (Ωr,Ω−1,−r; T0)≤

√
δ .

Proof. With probability δ̄ , Ωr is drawn from D in which case it is independent of Ω−1,−r, yielding a
correlation of 0. In the other event, the correlation is bounded by 1. Hence, using Theorem 2.18,

ρ

(
Ωr,Ω−1,−r; T

d-proj-1
3

)
≤
√

δ̄ ·02 +δ ·12 ≤
√

δ .
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3.4 Generalized noise introduction

To introduce noise, we prove the following generalizations of Lemmas 2.22 to 2.24.

Lemma 3.15. Let Γ⊆ [m], |Γ| ≥ 2 and define ρ0 =
√

1/2+1/2(1−α2δ 2/2)2. Then,

∣∣E[ψΓ(T
′
0)−ψΓ(T

′
1)
]∣∣≤ m

∑
t=2

sup
k

ρ
k
0(1− γ̄

k)≤ (m−1)sup
k

ρ
k
0(1− γ̄

k) .

Proof. Proved in Section 3.4.

Lemma 3.16. Let Γ⊆ [m], |Γ| ≥ 2 and define ρ1 =
√

1− γm−1. Then,∣∣E[ψΓ(T
′
1)−ψΓ(T

′
2)
]∣∣≤ sup

k
ρ

k
1(1− η̄

k) .

Proof. Proved in Section 3.4.

Lemma 3.17. Let Γ⊆ [m], |Γ| ≥ 2. Then,∣∣E[ψΓ(T
′
2)−ψΓ(T

′
3)
]∣∣≤ 2m

√
ξ +2mγ̄

J .

Proof. Proved in Section 3.4.

Proof of Proposition 3.9. Follows directly from Lemmas 3.15, 2.23, and 3.17 by summing the respective
differences.

Proof of Lemma 3.15: Introducing projected noise for g functions We define Ω′1 = Ω1,Ω
′
t = Ωd

t

for t ∈ {2, . . . ,m}, let y(t) be the lifted version of y(t), and T the lifted analogue of a distribution T.
Additionally, as we wish to claim simultaneously the lemmas for all Γ⊆ [m], |Γ| ≥ 2, let hA for a subset
A⊆ [m] denote

f [1∈A]
∏

t∈A\1
g(t) .

Proof. Let

D1 = T
d-proj-1
0 , Dr = T(r)

γ̄
Dr−1, r ∈ {2, . . . ,m} .

We note that DK
m is indeed the lifted analogue of T′1. Consequently, the lemma is proved by bounding the

respective differences of expectations
∣∣ψΓ(D

K
r )−ψΓ(D

K
r−1)

∣∣ for r ∈ {2, . . . ,m}.
Working out the notation, for r ∈ {2, . . . ,m},∣∣ψΓ(D

K
r−1)−ψΓ(D

K
r )
∣∣= ∣∣∣EDK

r−1

[
g(r)hΓ\r

]
− EDK

r

[
g(r)hΓ\r

]∣∣∣
=

∣∣∣∣EDK
r−1

[
g(r)hΓ\r

]
− E

(T(r)
γ̄

Dr−1)K

[
g(r)hΓ\r

]∣∣∣∣= ∣∣∣EDK
r−1

[
g(r)hΓ\r

]
− EDK

r−1

[
(Tγ̄ g(r))hΓ\r

]∣∣∣ . (3.3)

This is the setting of Theorem 2.25.
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By Lemma 3.12 and symmetry, the correlation ρ(Ω1×∏t 6=1,r Ωd
t ,Ω

d
r ;Td-proj-1

0 ), which equals ρ(Ω1×
∏t 6=1,r Ω′t ,Ω

′
r;D1), is bounded by

ρ0 ,
√

1/2+1/2(1−α2δ 2/2)2 .

As noise can only decrease correlation, the same bound holds for Dr−1. Similarly, this is a bound on any
subset of sample spaces in the case Γ 6= [m].

For r ∈ {2, . . . ,m}, if r /∈ Γ, the difference (3.3) is 0. Otherwise, we bound using Theorem 2.25 with
ρ ≤ ρ0; that is, (3.3)≤ supk ρk

0(1− γ̄k). In conclusion,∣∣ψΓ(T
′
0)−ψΓ(T

′
1)
∣∣= ∣∣ψΓ(D

K
1 )−ψΓ(D

k
m)
∣∣≤ m

∑
t=2

∣∣ψΓ(D
K
t−1)−ψΓ(D

K
t )
∣∣≤ (m−1)sup

k
ρ

k
0(1− γ̄

k) .

Proof of Lemma 3.16: Introducing noise for the f function

Proof. By Lemma 3.13,

ρ(Ω1,Ω
d
2×·· ·×Ω

d
m;Td-proj-1

1 )≤ ρ1 ,
√

1− γm−1 .

The same bound holds for ρ(Ω1,∏t∈Γ\1 Ω′t ;T
d-proj-1
1 ). Hence, using Theorem 2.25 again,

∣∣ψΓ(T
′
1)−ψΓ(T

′
2)
∣∣= ∣∣∣∣∣E(T2,...,m

γ̄,...,γ̄ T
d-proj-1
0

)K

[
f hΓ\1

]
− E(

T2,...,m
γ̄,...,γ̄ (T1

η̄ T0)
d-proj-1

)K

[
f hΓ\r

]∣∣∣∣∣
=

∣∣∣∣∣E(T2,...,m
γ̄,...,γ̄ T

d-proj-1
0

)K

[
f hΓ\r

]
− E(

T2,...,m
γ̄,...,γ̄ T

d-proj-1
0

)K

[
(Tη̄ f )hΓ\r

]∣∣∣∣∣≤ sup
k

ρ
k
1(1− η̄

k) .

Proof of Lemma 3.17: From projected noise to independent noise

Proof. Just as for the width-four case, the lemma follows from repeated application of Theorem 2.21. To
utilize the theorem, we again unravel the definition of g from the protocol:

g(y), Eb∼{0,1}[b⊕gv(b⊕y◦ π̄)] ,

where π̄ is an arbitrary bijection consistent with π . Define

g′v(y) = Eb∼{0,1}[b⊕gv(b⊕y)]

and let T′2
π̄ and T′3

π̄ permute the coordinates of g′ via π̄ . Also, for F ⊆ [m], let

hv
F = f [1∈F ]

∏
t∈F\1

g′v(y(t)) .

We recall the definition of the following two distributions,

T′2 ,
(

T2,...,m
γ̄,...,γ̄

(
T1

η̄ T0
)d-proj-1

)K
and T′3 ,

((
T2,...,m

γ̄,...,γ̄ T1
η̄ T0

)d-proj-1
)K

.
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The target difference equals

∣∣ψΓ(T
′
2)−ψΓ(T

′
3)
∣∣= ∣∣∣∣Eu,v,T′2

π{u,v}

[
f hv

Γ\1

]
− E

u,v,T′3
π{u,v}

[
f hv

Γ\1

]∣∣∣∣ . (3.4)

We apply Theorem 2.21 up to m−1 times, once for each of the coordinates 2, . . . ,m which appear in Γ.
Introduce Rt as follows,

Rt ,

(
Tt+1,...,m

γ̄,...,γ̄

(
T1,2,...,t

η̄ ,γ̄,...,γ̄ T0

)d-proj-1
)K

,

where we note that R1 corresponds to T′2 and Rm to T′3.
Formally, when applying it to coordinate t ∈ Γ\{1}, we have A = {1},B = {t},C = Γ\{1, t},γ = γ ,

and the distributions equal P= Rt−1 and R= Rt . The respective differences in expectation hence yield a
bound on the difference in expectation between T′2 = R2 and T′3 = Rm. According to the theorem, the
difference in expectation for coordinate t is bounded by 2

√
ξ +2γ̄J . In effect,

(3.4)≤
m

∑
t=2

(2
√

ξ +2γ̄
J)≤ 2m

√
ξ +2mγ̄

J .

3.5 Proof of Proposition 2.7: Bounding ET′3
[∏g], general case

We first limit ourselves to the hardest case: Γ = {2, . . . ,m} which corresponds to bounding

Eπ,T′3

[
g(y(2)) · · ·g(y(m))

]
,

and comment briefly on the other cases following the proof of the hardest case.
In the following, g denotes g′v as defined in the previous subsection.

Noised to low-degree functions

Lemma 3.18. Let D= T′3 or T′′3 . Then,∣∣∣ED

[
g(y(2)) · · ·g(y(m))

]
− ED

[
g≤d2(y(2)) · · ·g≤dm(y(m))

]∣∣∣≤ γ̄
d2 +

m

∑
r=3

γ̄
dr(2r−5)∑

r−1
t=2 dt/2 .

Proof. We considering the effect of removing the high-degree components one at a time and rewrite the
treated difference, ∣∣∣∣∣ m

∑
r=2

ED

[(
r−1

∏
t=2

g≤dt (y(t))

)
g>dr(y(r))

(
m

∏
t=r+1

g(y(t))

)]∣∣∣∣∣ . (3.5)

We bound in absolute value these terms separately. For r = 2, Cauchy-Schwarz gives a bound of

∣∣∣∣∣∣g>d2(y(2))
∣∣∣∣∣∣

2
·

∣∣∣∣∣
∣∣∣∣∣ m

∏
t=3

g(y(t))

∣∣∣∣∣
∣∣∣∣∣
2

≤ γ̄
d2 .
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For any term with 3≤ r ≤ m, Hölder’s inequality yields the bound

r−1

∏
t=2

∣∣∣∣∣∣g≤dt (y(t))
∣∣∣∣∣∣

2r−4

∣∣∣∣∣∣g>dr(y(r))
∣∣∣∣∣∣

2

m

∏
t=r+1

∣∣∣∣∣∣g(y(t))∣∣∣∣∣∣
∞

. (3.6)

Regarding the first kind of factors, by Lemma 1.7,∣∣∣∣∣∣g≤dt (y(t))
∣∣∣∣∣∣

2r−4
≤ (2r−5)dt/2

∣∣∣∣∣∣g≤dt (y(t))
∣∣∣∣∣∣

2
≤ (2r−5)dt/2 .

Again,
∣∣∣∣g>dr(y(r))

∣∣∣∣
2 ≤ γ̄dr , while

∣∣∣∣g(y(t))∣∣∣∣
∞
≤ 1. Hence, (3.6) is bounded by

γ̄
dr

r−1

∏
t=2

(2r−5)dt/2 = γ̄
dr(2r−5)∑

r−1
2 dt/2

and consequently (3.5) by

γ̄
d2 +

m

∑
r=3

γ̄
dr(2r−5)∑

r−1
2 dt/2 .

Smooth low-degree to shattered functions via hypercontractivity We recall the term shattered de-
noting functions where every non-zero fS satisfies |π(S)| = |S|. The goal is to show that for smooth
projections, low-degree functions are essentially shattered.

Lemma 3.19. Let D= T′3 or T′′3 . Then,∣∣∣∣∣Eπ,Dπ̄

[
m

∏
t=2

g≤dt
t (y(t))

]
− Eπ,Dπ̄

[
m

∏
t=2

gt
�π≤dt (y(t))

]∣∣∣∣∣≤ (2m−5)∑
m
t=2 dt/2(m−1)

√
ξ .

Proof. It suffices to bound for 2≤ r ≤ m the term∣∣∣∣∣(g≤dr(y(r))−g�π≤dr(y(r))
)

E

[(
r−1

∏
t=2

g�π≤dt (y(t))

)(
m

∏
t=r+1

g≤dt (y(t))

)]∣∣∣∣∣
which via Hölder’s is bounded by

∣∣∣∣∣∣g≤dr(y(r))−g�π≤dr(y(r))
∣∣∣∣∣∣

2

r−1

∏
t=2

∣∣∣∣∣∣g�π≤dt (y(t))
∣∣∣∣∣∣

2m−4

m

∏
t=r+1

∣∣∣∣∣∣g≤dt (y(t))
∣∣∣∣∣∣

2m−4
.

By definition, dr ≤ J and hence Lemma 2.20 bounds the first factor by
√

ξ
∣∣∣∣g≤dr(y(r))

∣∣∣∣
2 while Lemma 1.7

bounds the respective factors by (2m−5)dt/2||g||2. As 2m−5≥ 1, this yields the desired bound, summing
over the m−1 terms.
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Shattered functions to independent coordinates

Lemma 3.20. For shattered functions, T′3 and T′′3 yield identical expectations, i. e., coordinates in L may
for shattered functions be drawn independently. That is,

ET′3

[
m

∏
t=2

gt
�π≤dt

]
= ET′′3

[
m

∏
t=2

gt
�π≤dt

]
.

Proof. Consider the Efron-Stein decompositions of the functions in the two terms. Similar to the width-
four case, we argue that each term, indexed by (St)

m
t=2, coincides in expectation for the two distributions.

First we claim that terms for which |π (
⋃

St)|< |
⋃

St | evaluate to 0 due to our choice of test distribution.
To see this, consider an i ∈ K for which there are at least two different j 6= j′ ∈

⋃
St projecting to i and

let T and T ′ be the indices t for which j ∈ St or j′ ∈ St , respectively. Since we are considering shattered
functions, the sets (St)t are shattered for non-zero terms and so T and T ′ are disjoint and non-empty.
Since µm—and in extension δ̄D+δ µm—satisfies (3.1), a factor of such terms has expectation zero.

Given |π (
⋃

St)| = |
⋃

St |, the argument is identical to that of the width-four case, Lemma 2.29.
Namely, for each i, there is at most one j such that (y(t)j )t depends on xi and hence the distributions T′3
and T′′3 coincide.

Putting it together

Proof of Proposition 3.10. Using the three preceding lemmas and dt ≤ J for all t,∣∣∣ET′3

[
g(y(2)) · · ·g(y(m))

]
− ET′′3

[
g�π≤d2(y(2)) · · ·g�π≤dm(y(m))

]∣∣∣
≤ γ̄

d2 +
m

∑
r=3

γ̄
dr(2r−5)∑

r−1
t=2 dt/2 +(m−1)(2m−5)∑

m
t=2 dt/2

√
ξ .

and similarly, ∣∣∣ET′′3

[
g(y(2)) · · ·g(y(m))

]
− ET′′3

[
g�π≤d2(y(2)) · · ·g�π≤dm(y(m))

]∣∣∣
≤ γ̄

d2 +
m

∑
r=3

γ̄
dr(2r−5)∑

r−1
t=2 dt/2 +(m−1)(2m−5)∑

m
t=2 dt/2

√
ξ .

It follows that∣∣∣ET′3

[
g(y(2)) · · ·g(y(m))

]∣∣∣≤∣∣∣ET′′3

[
g(y(2)) · · ·g(y(m))

]∣∣∣
+2γ̄

d2 +2
m

∑
r=3

γ̄
dr(2r−5)∑

r−1
t=2 dt/2 +2(m−1)(2m−5)∑

m
t=2 dt/2

√
ξ

and it remains to bound ∣∣∣ET′′3

[
g(y(2)) · · ·g(y(m))

]∣∣∣ . (3.7)
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By the definition of correlation, (3.7) is no greater than

ρ(ΩL
2 ,Ω

L
3×·· ·×Ω

L
m; T′′3 )

∣∣∣∣∣∣g(y(2))∣∣∣∣∣∣
T′′3 ,2

∣∣∣∣∣∣g(y(3)) · · ·g(y(m))
∣∣∣∣∣∣
T′′3 ,2
≤ ρ(ΩL

2 ,Ω
L
3×·· ·×Ω

L
m; T′′3 ) .

For the distribution T′′3 , the coordinates L are independent and so by Lemma 2.15,

ρ(ΩL
2 ,Ω

L
3×·· ·×Ω

L
m; T′′3 )≤max

j∈L
ρ(Ω2, j,Ω3, j×·· ·×Ωm, j; T′′3 ) = ρ(Ω2,Ω3×·· ·×Ωm; T3) .

In Lemma 3.14, we bounded this correlation by
√

δ .
Consequently,∣∣∣ET′3

[
g(y(2)) · · ·g(y(m))

]∣∣∣≤ 2γ̄
d2 +2

m

∑
r=3

γ̄
dr(2r−5)∑

r−1
t=2 dt/2 +2(m−1)(2m−5)∑

m
t=2 dt/2

√
ξ +
√

δ .

Cases Γ ( {2, . . . ,m} As mentioned for the width-four case, terms Γ ( {2, . . . ,m}, |Γ| ≥ 2, follow via
the same arguments; bounds on high-degree terms only produce fewer terms and similarly with the step
from low-degree terms to shattered low-degree terms; the argument that the expectation is the same as for
independent coordinates is identical and finally the correlation between the same spaces indexed by Γ can
not yield a better correlation than between the spaces ΩL

2 , . . . ,Ω
L
m.

3.6 An invariance-style theorem

The following is essentially a variant of the second part of Theorem 1.14 in Mossel, 2010 [19], slightly
generalized and without any dependence on α , the least probability of any atom in the relevant probability
space. This permits the theorem to be used for analyzing reductions from LABEL COVER without
restricting projection degrees. Our proofs are based on the the coordinate-wise substitution method of
Lindeberg and more closely the analysis found in O’Donnell and Wu, 2009 [22]. In the following section,
we apply this theorem to directly bound mixed, i. e., E[ f ∏g], terms.

Theorem 3.21. Consider functions { f (t) ∈ L∞(Ωn
t )}t∈[m] on a probability space P= (∏m

t=1 Ωt ,P)⊗n and
a set M ( [m]. Furthermore, let C be the collection of minimal sets C ⊆ [m],C * M, such that the spaces
{Ωt}t∈C are dependent. Then,∣∣∣∣∣E[∏ f (t)

]
−∏

t /∈M
E
[

f (t)
]

E

[
∏
t∈M

f (t)
]∣∣∣∣∣≤ 22m max

C∈C

√
min
r∈C

TotInf( f (r))∑
i

∏
t∈C−r

Infi( f (t))∏
t /∈C

∣∣∣∣∣∣ f (t)∣∣∣∣∣∣
∞

.

Proof. Let { f (t)S }S⊆[n] be the respective Efron-Stein decompositions of the functions. The LHS equals∣∣∣∣∣∣ ∑
~S⊆[n]m

(
E
[
∏ f (t)St

]
−∏

t /∈M
E
[

f (t)St

]
E

[
∏
t∈M

f (t)St

])∣∣∣∣∣∣ . (3.8)

For a vector ~S ⊆ [n]m, define i∗(~S) = max{
⋃

t /∈M St ∪{0}} and T ∗(~S) = {T ⊆ [m] | i∗(~S) ∈ St}. Let
{Ai,T}i∈{0,...,n},T⊆[m] be the partition of [n]m by these two quantities and note that the choices of ~S ∈Ai,T
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correspond to vectors where St is a subset of [i] if t /∈ M and else a subset of [n]; and i ∈ St iff t ∈ T .
Denote by S

(i)
T,t the respective choices of St , i. e., Ai,T = ∏S

(i)
T,t .

We note that for ~S such that i∗(~S) = 0, i. e., St = /0 for every t /∈ M, the two expectations in (3.8)
coincide and the difference is 0. While whenever ~S ∈ Ai,T for T * M, the coordinate i appears in a
partition besides M and so by independence and properties of Efron-Stein decompositions, the right term
evaluates to 0. Consequently,

(3.8) =

∣∣∣∣∣∣ ∑
~S∈
⊎

i,T Ai,T

(
E
[
∏ f (t)St

]
−∏

t /∈M
E
[

f (t)St

]
E

[
∏
t∈M

f (t)St

])∣∣∣∣∣∣=
∣∣∣∣∣∣ ∑
i,T*M

∑
~S∈Ai,T

E
[
∏ f (t)St

]∣∣∣∣∣∣ , (3.9)

where the sum is over i ∈ [n].
Similarly, whenever T ∗(~S)* M is a strict subset of some C ∈ C, the expectation evaluates to 0 by

independence and properties of the decompositions, i. e.,

(3.9) =

∣∣∣∣∣∣ ∑
T :∃C∈CT⊇C

∑
i

∑
~S∈Ai,T

E
[
∏ f (t)St

]∣∣∣∣∣∣ . (3.10)

By the choices of ~S ∈Ai,t and noting that T ⊇C,C ∈ C implies T * M,

(3.10) =

∣∣∣∣∣∣∣ ∑
T⊇C,C∈C

∑
i

E

∏

 ∑
S∈S(i)T,t

f (t)S



∣∣∣∣∣∣∣≤ ∑

T⊇C,C∈C
∑

i

∣∣∣∣∣∣∣E
∏

 ∑
S∈S(i)T,t

f (t)S



∣∣∣∣∣∣∣ . (3.11)

Let r ∈ C be arbitrary such that C−{r} * M which is well-defined as all C ∈ C, being minimal
dependent sets not contained in M, satisfy |C−M| ≥ 1 and |C| ≥ 2. Consider writing the expectation

E

∏
t∈[m]

 ∑
S∈S(i)T,t

f (t)S


= E


 ∑

S∈S(i)T,r

f (r)S

 · ∏
t∈C−{r}

 ∑
S∈S(i)T,t

f (t)S

 ·∏
t /∈C

 ∑
S∈S(i)T,t

f (t)S


 .

Applying Hölder’s inequality to these three factors with respective parameters 2,2, and ∞,

(3.11)≤ ∑
T⊇C,C∈C

min
r∈C

∑
i

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ∑
S∈S(i)T,r

f (r)S

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ∏
t∈C−{r}

 ∑
S∈S(i)T,t

f (t)S


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

∏
t /∈C

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ∑
S∈S(i)T,t

f (t)S

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞

. (3.12)

As we assumed every C ∈ C was a minimal dependent set not contained in M and C−{r} is not a
subset of M, the spaces {Ωt}t∈C−{r} are independent and in effect,

(3.12) = ∑
T⊇C,C∈C

∑
i

∏
t∈C

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ∑
S∈S(i)T,t

f (t)S

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

∏
t /∈C

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ∑
S∈S(i)T,t

f (t)S

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞

. (3.13)
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Consider first the factor ∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ∑
S∈S(i)T,t

f (t)S

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

for some t /∈M and t ∈C ⊆ T . By construction, S(i)T,t consists of the subsets of [i] containing i, i. e., the
norm equals

E

( ∑
S⊆[i],i∈S

f (t)S

)2
1/2

which by properties of the decomposition equals(
∑

S⊆[i],i∈S
E
[(

f (t)S

)2
])1/2

.

Recalling the expression of influences as squares of Efron-Stein terms, this quantity is bounded from
above by

√
Infi( f (t)). Similarly, whenever t ∈M and t ∈ T , the factors correspond exactly to expression

of influences. Hence,

(3.13)≤ ∑
T⊇C,C∈C

∑
i

√
∏
t∈C

Infi( f (t))

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∏t /∈C

∑
S∈S(i)T,t

f (t)S

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞

. (3.14)

From Lemma 1.10, for every t ∈M, ∑S∈Si
T,t

fS equals f⊆[n]−{i} if t /∈ T and otherwise f⊆[n]− f⊆[n]−{i};
either possibility bounded by 2|| f ||

∞
. In light of this,

∏
t /∈C

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ∑
S∈S(i)T,t

f (t)St

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞

≤∏
t /∈C

2
∣∣∣∣∣∣ f (t)∣∣∣∣∣∣

∞

≤ 2m
∏
t /∈C

∣∣∣∣∣∣ f (t)∣∣∣∣∣∣
∞

.

Returning to our expression,

(3.14)≤ 2m
∑

T⊇C,C∈C
∑

i

√
∏
t∈C

Infi( f (t))∏
t /∈C

∣∣∣∣∣∣ f (t)∣∣∣∣∣∣
∞

. (3.15)

The square root of the influence of a coordinate for a function is bounded by the infinity norm of said
function. Hence, the maximum of (3.15) is achieved for some T =C,C ∈ C, and

(3.15)≤ 22m max
C∈C ∑

i

√
∏
t∈C

Infi( f (t))∏
t /∈C

∣∣∣∣∣∣ f (t)∣∣∣∣∣∣
∞

= 22m max
C∈C

min
r∈C

∑
i

√
Infi( f (r))

√
∏

t∈C\{r}
Infi( f (t))∏

t /∈C

∣∣∣∣∣∣ f (t)∣∣∣∣∣∣
∞

, (3.16)
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where r is an arbitrary member of C. Applying Cauchy-Schwarz over i,

(3.16)≤ 22m max
C∈C

min
r∈C

(
∑

i
Infi( f (r))

)1/2(
∑

i
∏

t∈C\{r}
Infi( f (t))

)1/2

∏
t /∈C

∣∣∣∣∣∣ f (t)∣∣∣∣∣∣
∞

= 22m max
C∈C

√
min
r∈C

TotInf( f (r))∑
i

∏
t∈C\{r}

Infi( f (t))∏
t /∈C

∣∣∣∣∣∣ f (t)∣∣∣∣∣∣
∞

,

as desired.

Remark 3.22. Given a function g : Ωnd → R and a projection π : L→ K where gπ : (Ωd)n → R is
suitably defined, the influence of a coordinate i ∈ K translates naturally to the sum of influences j ∈ L
which project to i. Namely, we have

Infi(gπ) = Infπ−1(i)(g)≤ ∑
j :π( j)=i

Inf j(g) .

This follows from the expression of influences in decompositions of g which equals ∑T : i∈π(T ) E
[
g2

T
]

in
the former two cases and ∑T |T ∩π−1(i)|E

[
g2

T
]

in the third.

Corollary 3.23. Let P = (∏m
t=1 Ωt ,P) be a probability space such that Ωt is independent of Ω1 for

t = 2, . . . ,m. Consider label sets K,L = K× [d], and mean-zero functions f : ΩK
1 → [−1,1] and {g(t) :

ΩL
t → [−1,1]}m

t=2. Finally, let γ1, . . . ,γm ∈ (0,1] be parameters and define

P′ =

(
T(1)

γ̄1

(
T(2)

γ̄2
· · ·T(m)

γ̄m
P
)d-proj-1

)⊗K

.

Then, ∣∣∣EP′

[
f ∏g(t)

]∣∣∣≤ 22m
√

γ−1 max
r ∑

i, j
Inf(γ̄1)

i ( f )Inf(γ̄r)
(i, j)(g

(r)) ,

where γ = mint 6=1 γt .

Proof. We aim to employ Theorem 3.21 with the partition [m] = M1 ∪M2,M1 = {1},M2 = M =

{2, . . . ,m}. To this end, we define lifted functions g(t) : (Ωd
t )

L → [−1,1] as g(t)(y) , g(y) where
yi,r = y(i,r). Hence, as f has mean zero,∣∣∣EP′

[
f ∏g(t)

]∣∣∣= ∣∣∣EP′

[
f ∏g(t)

]
− EP′[ f ] EP′

[
∏g(t)

]∣∣∣= ∣∣∣EP′

[
f ∏g(t)

]
− EP′[ f ] EP′

[
∏g(t)

]∣∣∣ .
(3.17)

As a consequence of the assumption that Ωt is independent of Ω1 for any t 6= 1, Ωd
t is independent of

Ω1. In turn, the minimal dependent sets C * M of P′ are supersets of {{1,r,r′}}r 6=r′∈[m]. Theorem 3.21,
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together with that the influence of a coordinate for a function is no greater than the squared infinity-norm
of the function, implies that (3.17) is bounded by

22m max
2≤r,r′≤m; r 6=r′

√
TotInf

(
g(r′)

)
∑

i
Infi( f )Infi

(
g(r)
)

∏
t 6=1,r,r′

∣∣∣∣∣∣g(t)∣∣∣∣∣∣
∞

, (3.18)

with respect to the distribution P′. With respect to the uniform distribution, the expression equals

22m max
2≤r,r′≤m; r 6=r′

√
TotInf

(
Tγ̄r′ g

(r′)
)
∑

i
Infi(Tγ̄1 f )Infi

(
Tγ̄r g(r)

)
∏

t 6=1,r,r′

∣∣∣∣∣∣Tγ̄t g(t)
∣∣∣∣∣∣

∞

. (3.19)

As earlier remarked, for a function ḡ : (Ωd)K → R, Infi(ḡ) ≤ ∑ j∈π−1(i) Inf j(g) and so TotInf(ḡ) ≤
TotInf(g). For a γ-noised function, the total influence is bounded by γ−1 and hence

TotInf
(

Tγ̄r′ g
(r′)
)
≤ γ

−1
r′ ≤ γ

−1

where γ = mint 6=1 γt . We also note that the infinity-norm of Tγ̄t g(t) is bounded by the maximum of
∣∣g(t)∣∣

which is at most one. Hence, the difference (3.19) is bounded by

22m max
2≤r,r′≤m; r 6=r′

√
γ−1 ∑

i
Inf(γ̄1)

i ( f )Infi

(
Tγ̄r g(r)

)
≤ 22m

√
γ−1 max

r ∑
i

Inf(γ̄1)
i ( f )∑

j
Inf(i, j)

(
Tγ̄r g(r)

)
= 22m

√
γ−1 max

r ∑
i, j

Inf(γ̄1)
i ( f )Inf(γ̄r)

(i, j)

(
g(r)
)
.

3.7 Proof of Proposition 3.11: Bounding ET′3
[ f ∏g], general case

Bounding mixed, i. e., E[ f ∏g], terms in the general case is straightforward with the invariance-style
theorem of the preceding subsection

Proof. We apply Theorem 3.23 with γ1 = η ,γ2 = γ, . . . ,γm = γ , g(t) = g and, without loss of generality,
permuting coordinates such that π(i, j) = i. Applying the corollary, mixed terms are bounded as

∣∣ψΓ(T
′
3)
∣∣≤ 22|Γ|

√
γ−1 ∑

i, j:π( j)=i
Inf(η̄)

i ( f ) max
t∈Γ\{1}

Inf(γ̄t)
j (g) ,

where γ = mint∈Γ\{1} γt ≥ γm. Influence only decreases influence and the above is bounded by

22m
√

γ−1 ∑
i, j:π( j)=i

Inf(η̄)
i ( f ) max

t∈Γ\{1}
Inf(γ̄)j (g) ,

yielding the desired bound.
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