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Abstract: We present a family a monotone functions fd : {0,1}n→{0,1} so that fd can be
computed as a depth-d decision tree and so that fd disagrees with any k-junta on a constant
fraction of inputs for any k = exp(o(

√
d)). This gives a negative answer to a problem

circulated independently by Elad Verbin and by Rocco Servedio and Li-Yang Tan.
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1 Introduction

In [3], O’Donnell and Servedio show that any monotone function given by a depth-d decision tree can
be learned to constant accuracy from random samples in poly(n,2d) time. The impact of this result is
somewhat lessened by an apparent lack of interesting monotone functions given by low-depth decision
trees. In particular, Elad Verbin as well as Rocco Servedio and Li-Yang Tan independently suggested in
2010 that all such functions may essentially depend on few variables [1, page 10].
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Conjecture 1.1. For every ε > 0 and every monotone function f : {0,1}n→{0,1} given by a depth-d
decision tree, there is a k-junta, g, for k = polyε(d) so that f and g agree on all but an ε-fraction of
inputs.

In this note, we disprove the above conjecture, and in particular provide an example of a monotone
low-degree function that is not well approximated by any small junta. In particular we prove:

Theorem 1.2. There exists a constant ε > 0 so that for every positive integer d, there exists a k =
exp(Ω(

√
d)) and a monotone function f : {0,1}n→{0,1} given by a depth-d decision tree, so that for

every k-junta g, f and g disagree on at least an ε-fraction of inputs.

In fact it is known that the bound on k in Theorem 1.2 is tight up to the constant in the exponent.
In particular, it is shown in [3] that any monotone function given by a depth-d decision tree has total
influence I( f ) = O(

√
d). We combine this with the main result of [2], which says that any Boolean

function f can be ε-approximated by a k-junta for k = exp
(
O(I( f )/ε)

)
. Combining these results we find

that:

Observation 1.3. If f is a monotone function given by a depth-d decision tree, and if ε > 0, then there
is a k-junta g that agrees with f on all but an ε fraction of inputs for k = exp

(
O(
√

d/ε)
)
.

The function we construct to show Theorem 1.2 will combine ideas from two previous constructions,
the monotone addressing function and Talagrand’s function.

The monotone addressing function is defined by

f (x1, . . . ,xd−1,y0, . . . ,y2d−1−1) =


1 if ∑xi > b(d−1)/2c,
yx0...xd−1 if ∑xi = b(d−1)/2c,
0 if ∑xi < b(d−1)/2c.

This is an example of a monotone function given by a depth-d decision tree that depends on exponentially
many variables, and thus provides us with a good starting point. The monotone addressing function fails
to provide a counter-example to Conjecture 1.1 though since it agrees with the majority function except
on a set of measure O(1/

√
d).

Given the bound on the total sensitivity of a low-depth monotone function, we know that any f
satisfying the conditions of Theorem 1.2 must not only have near the maximum possible total influence
for a low-depth monotone function, but also must not be approximable by a function with much lower
total influence. Because of this restriction, our construction will look somewhat similar to a construction
of Talagrand in [4]. In particular, Talagrand constructs a monotone function f on {0,1}d so that on a
constant fraction of inputs, f has sensitivity (i. e., the number of coordinates such that changing the input
at that coordinate would change the output of f ) Ω(

√
d). Since, as is easily seen, the average sensitivity

over all inputs is equal to the total influence, this is as large as possible. On the other hand, this condition
tells us that f retains large average sensitivity even after ignoring any ε-fraction of inputs for sufficiently
small constant ε . Talagrand’s function fails to provide a counter-example to Conjecture 1.1 on its own,
because it is already a d-junta.
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2 The construction

In order to define the function f with the properties specified by Theorem 1.2, we first introduce some
background notation. We let d, t and m be integers with t = Θ(

√
d) and m = Θ(2t). We furthermore

assume that 2−tm is sufficiently small given the value of t/
√

d. We let S = (S1, . . . ,Sm) be a random
sequence of sets, where the Si are chosen independently and uniformly from the set of subsets of
{1,2, . . . ,d−1} of size exactly t. Given this S, we define the function TS on {0,1}d−1 as follows:

TS(x1, . . . ,xd−1) = {1≤ i≤ m : x j = 1 for all j ∈ Si}.

We will hereafter abbreviate T by suppressing the explicit dependence on S, and abbreviate (x1, . . . ,xd−1)
by x.

We finally define f as

fS(x1, . . . ,xd−1,y1, . . . ,ym) =


1 if |T (x)| ≥ 2,
0 if |T (x)|= 0,
yi if T (x) = {i}.

Again, we will often suppress the dependence of f on S. It is clear that f is monotone. Furthermore, f
is given by a depth-d decision tree, since after fixing the values of the xi, the value of f depends on at
most one more coordinate. In the next section, we show that f cannot be approximated by any k-junta for
small k.

Note that Talagrand’s function is given (for appropriately chosen S) by

G(x1, . . . ,xd−1) =

{
1 if |T (x)| ≥ 1,
0 if |T (x)|= 0.

3 Approximation bounds

Theorem 1.2 will follow from the following proposition:

Proposition 3.1. There exists an ε > 0 so that for fS defined as above, with constant probability over the
choice of S, f is not ε-approximated by any k-junta for k = o(2t).

A key step in our proof will be to show that with constant probability f actually depends on one of
the yi.

Lemma 3.2. With T as above,
Pr
S,x
(|TS(x)|= 1) = Ω(1) .

Proof. We will show the further claim that

E [|TS(x)|(2−|TS(x)|)] = Ω(1) . (1)

THEORY OF COMPUTING, Volume 9 (17), 2013, pp. 587–592 589

http://dx.doi.org/10.4086/toc


DANIEL M. KANE

Since the term in the expectation is positive only if |T |= 1, this will complete our proof. We note that

E [|TS(x)|] =
m

∑
i=1

Pr(i ∈ TS(x))

=
m

∑
i=1

Pr(x j = 1 for all j ∈ Si)

= m2−t .

On the other hand, we have that

E
[
|TS(x)|(|TS(x)|−1)

]
= ∑

i 6= j
Pr(i, j ∈ TS(x))

= ∑
i 6= j

Pr(i ∈ TS(x))Pr( j ∈ TS(x) | i ∈ TS(x))

= ∑
i 6= j

2−t Pr(x` = 1 for all ` ∈ S j | x` = 1 for all ` ∈ Si) .

To compute this conditional probability we let S j = {a1, . . . ,at} where the ai are picked randomly from
{1,2, . . . ,d−1} without replacement. We compute it as the product

t

∏
k=1

Pr(xak = 1 | xa1 = . . .= xak−1 = 1 and x` = 1 for all ` ∈ Si) .

These probabilities are approximated by first fixing the values of Si and a1, . . . ,ak−1. After additionally
fixing the value of ak, the probability in question becomes 1 if ak ∈ Si and 1/2 otherwise. Thus the
probability that xar = 1 is

1+Pr(ar ∈ Si)

2
=

1+ |Si\{a1,...,ar−1}|
d−r

2
= 1/2+O(t/d) .

Hence the probability that j ∈ TS(x) given that i ∈ TS(x) is(
1/2+O(t/d)

)t
= 2−t exp(O(t2/d)) .

Therefore, we have that

E
[
|TS(x)|(|TS(x)|−1)

]
= ∑

i 6= j
2−2t exp(O(t2/d))≤ (2−tm)2 exp(O(t2/d))

and hence

E [|TS(x)|(2−|TS(x)|)] = E [|TS(x)|]−E [|TS(x)|(|TS(x)|−1)]

≥ (2−tm)− (2−tm)2 exp(O(t2/d))

= (2−tm)
(
1− (2−tm)exp(O(t2/d))

)
.

As long as 2−tm is bounded below by a constant and above by exp(−O(t2/d))/2, this is Ω(1).
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We are now ready to prove Proposition 3.1. By Lemma 3.2, we note that with constant probability
over S, that Prx(|T (x)|= 1) = Ω(1). For such S, we claim that f has the desired property. In particular
we claim the following:

Lemma 3.3. If f is as above and g is a k-junta, then

Pr
(

f (x,y) 6= g(x,y)
)
≥ Prx(|T (x)|= 1)− k2−t

2
.

Proof. This follows from the simple observation that if, after fixing the value of x, we have that T = {i}
where g does not depend on yi, then Pry( f (x,y) 6= g(x,y))= 1/2. This is because after further conditioning
on the values of all y j for j 6= i, g becomes a constant function (by assumption) and f takes the values 0
and 1 each with probability 1/2. Therefore we have that

Pr( f (x,y) 6= g(x,y))≥ Pr(T (x) = {i} for some i, and g does not depend on yi)

2

=
Pr(|T (x)|= 1)−Pr(T (x) = {i} for some i, and g depends on yi)

2

=
Pr(|T (x)|= 1)−∑i:g depends on yi Pr(T (x) = {i})

2

≥
Pr(|T (x)|= 1)−∑i:g depends on yi Pr(i ∈ T (x))

2

=
Pr(|T (x)|= 1)−∑i:g depends on yi 2−t

2

≥ Prx(|T (x)|= 1)− k2−t

2
.

Proposition 3.1 and Theorem 1.2 now follow immediately.
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