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1 Introduction

A lattice is a periodic geometric object defined as the set of all integer combinations of some linearly
independent vectors in Rn. The interesting combinatorial structure of lattices has been investigated by
mathematicians over the last two centuries, and for at least three decades it has also been studied from an
asymptotic algorithmic point of view. Roughly speaking, most fundamental problems on lattices are not
known to be efficiently solvable. Moreover, there are hardness results showing that such problems cannot
be solved by polynomial-time algorithms unless the polynomial-time hierarchy collapses. One of the
main motivations for research on the hardness of lattice problems is their applications in cryptography,
as was demonstrated by Ajtai [3], who came up with a construction of cryptographic primitives whose
security relies on the worst-case hardness of certain lattice problems.

Two main computational problems associated with lattices are the Shortest Vector Problem (SVP)
and the Closest Vector Problem (CVP). In the former, for a lattice given by some basis we are supposed
to find (the length of) a shortest nonzero vector in the lattice. The problem CVP is an inhomogeneous
variant of SVP, in which given a lattice and some target point one has to find (its distance from) the
closest lattice point. The hardness of lattice problems partly comes from the fact that there are many
possible bases for the same lattice.

In this paper we improve the best hardness result known for SVP. Before presenting our results let us
start with an overview of related work.

1.1 Related work

In the early 1980s, Lenstra, Lenstra, and Lovász (LLL) [20] presented the first polynomial-time approx-
imation algorithm for SVP. Their algorithm achieves an approximation factor of 2O(n), where n is the
dimension of the lattice. Using their algorithm, Babai [7] gave an approximation algorithm for CVP
achieving the same approximation factor. A few years later, improved algorithms were presented for
both problems, obtaining a slightly sub-exponential approximation factor, namely 2O(n(log logn)2/ logn) [31],
and this has since been improved slightly [4, 26]. The best algorithm known for solving SVP exactly
requires exponential running time in n [18, 4, 26]. All the above results hold with respect to any `p norm
(1≤ p≤ ∞).

On the hardness side, it was proven in 1981 by van Emde Boas [32] that it is NP-hard to solve SVP
exactly in the `∞ norm. The question of extending this result to other norms, and in particular to the
Euclidean norm `2, remained open until the breakthrough result by Ajtai [2] showing that exact SVP in
the `2 norm is NP-hard under randomized reductions. Then, Cai and Nerurkar [10] obtained hardness
of approximation to within 1+n−ε for any ε > 0. The first inapproximability result of SVP to within a
factor bounded away from 1 is that of Micciancio [21], who showed that under randomized reductions
SVP in the `p norm is NP-hard to approximate to within any factor smaller than p

√
2. For the `∞ norm, a

considerably stronger result is known: Dinur [14] showed that SVP is NP-hard to approximate in the `∞

norm to within a factor of nc/ log logn for some constant c > 0.
To date, the strongest hardness result known for SVP in the `p norm is due to Khot [19] who showed

NP-hardness of approximation to within arbitrarily large constants under randomized reductions for any
1 < p < ∞. Furthermore, under randomized quasipolynomial-time reductions (i. e., reductions that run
in time 2poly(logn)), the hardness factor becomes 2(logn)1/2−ε

for any ε > 0. Khot speculated there that it
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might be possible to improve this to 2(logn)1−ε

, as this is the hardness factor known for the analogous
problem in linear codes [16].

Khot’s proof does not work for the `1 norm. However, it was shown in [30] that for lattice problems,
the `2 norm is the easiest in the following sense: for any 1≤ p≤ ∞, there exists a randomized reduction
from lattice problems such as SVP and CVP in the `2 norm to the respective problem in the `p norm with
essentially the same approximation factor. In particular, this implies that Khot’s results also hold for the
`1 norm.

Finally, we mention that a considerably stronger result is known for CVP, namely that for any
1 ≤ p ≤ ∞, it is NP-hard to approximate CVP in the `p norm to within nc/ log logn for some constant
c > 0 [15]. We also mention that in contrast to the above hardness results, it is known that for any c > 0,
SVP and CVP are unlikely to be NP-hard to approximate to within a

√
cn/ logn factor, as this would

imply the collapse of the polynomial-time hierarchy [17, 1].

1.2 Our results

The main result of this paper improves the best NP-hardness factor known for SVP under randomized
quasipolynomial-time reductions. This and two additional hardness results are stated in the following
theorem. Here, RTIME is the randomized one-sided error analogue of DTIME. Namely, for a function
f we denote by RTIME( f (n)) the class of problems having a probabilistic algorithm running in time
O( f (n)) on inputs of size n that accepts YES inputs with probability at least 2/3, and rejects NO inputs
with certainty.

Theorem 1.1. For every 1≤ p≤ ∞ the following holds.

1. For every constant c≥ 1, there is no polynomial-time algorithm that approximates SVP in the `p

norm to within a factor of c unless

NP⊆ RP=
⋃
c≥1

RTIME(nc) .

2. For every ε > 0, there is no polynomial-time algorithm that approximates SVP on n-dimensional
lattices in the `p norm to within a factor of 2(logn)1−ε

unless

NP⊆ RTIME(2poly(logn)) .

3. There exists a c > 0 such that there is no polynomial-time algorithm that approximates SVP on
n-dimensional lattices in the `p norm to within a factor of nc/ log logn unless

NP⊆ RSUBEXP=
⋂

δ>0

RTIME(2nδ

) .

Theorem 1.1 improves on the best known hardness result for any p < ∞. For p = ∞, a better hardness
result is already known, namely that for some c > 0, approximating to within nc/ log logn is NP-hard [14].
Moreover, item 1 was already proved by Khot [19] and we provide an alternative proof. We remark that
all three items follow from a more general statement (see Theorem 3.1).
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1.3 Techniques

A standard method to prove hardness of approximation for large constant or super-constant factors is to
first prove hardness for some fixed constant factor, and then amplify the constant using some polynomial-
time (or quasipolynomial-time) transformation. For example, the tensor product of linear codes is used
to amplify the NP-hardness of approximating the minimum distance in a linear code of block length n
to arbitrarily large constants under polynomial-time reductions and to 2(logn)1−ε

(for any ε > 0) under
quasipolynomial-time reductions [16]. This example motivates one to use the tensor product of lattices to
increase the hardness factor known for approximating SVP. However, whereas the minimum distance of
the k-fold tensor product of a code C is simply the kth power of the minimum distance of C, the behavior
of the length of a shortest nonzero vector in a tensor product of lattices is more complicated and not so
well understood.

Khot’s approach in [19] was to prove a constant hardness factor for SVP instances that have some
“code-like” properties. The rationale is that such lattices might behave in a more predictable way under the
tensor product. The construction of these “basic” SVP instances is ingenious, and is based on BCH codes
as well as a restriction into a random sublattice. However, even for these code-like lattices, the behavior
of the tensor product was not clear. To resolve this issue, Khot introduced a variant of the tensor product,
which he called augmented tensor product, and using it he showed the hardness factor of 2(logn)1/2−ε

. This
unusual hardness factor can be seen as a result of the augmented tensor product. In more detail, for the
augmented tensor product to work, the dimension of Khot’s basic SVP instances grows to nΘ(k), where
k denotes the number of times we intend to apply the augmented tensor product. After applying it, the
dimension grows to nΘ(k2) and the hardness factor becomes 2Θ(k). This limits the hardness factor as a
function of the dimension n to 2(logn)1/2−ε

.
Our main contribution is showing that Khot’s basic SVP instances do behave well under the (standard)

tensor product. The proof of this fact uses a new method to analyze vectors in the tensor product of
lattices, and is related to a technique used by de Shalit and Parzanchevski [13]. Theorem 1.1 now follows
easily: we start with (a minor modification of) Khot’s basic SVP instances, which are known to be hard
to approximate to within some constant. We then apply the k-fold tensor product for appropriately chosen
values of k and obtain instances of dimension nO(k) with hardness 2Ω(k).

1.4 Open questions

Some open problems remain. The most obvious is proving that SVP is hard to approximate to within
factors greater than nc/ log logn under some plausible complexity assumption. Such a result, however, is
not known for CVP nor for the minimum distance problem in linear codes, and most likely proving it
there first would be easier. An alternative goal is to improve on the O(

√
n/ logn) upper bound beyond

which SVP is not believed to be NP-hard [17, 1].
A second open question is whether our complexity assumptions can be weakened. For instance, our

nc/ log logn hardness result is based on the assumption that NP* RSUBEXP. For CVP, such a hardness
factor is known based solely on the assumption P 6= NP [15]. Showing something similar for SVP would
be very interesting. In fact, coming up with a deterministic reduction (even for constant approximation
factors) already seems very challenging; all known hardness proofs for SVP in `p norms, p < ∞, use
randomized reductions. (We note, though, that [21] does describe a deterministic reduction based on a
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certain number-theoretic conjecture.) Ideas appearing in the recent NP-hardness proofs of the minimum
distance problem in linear codes [11, 6] might be useful. Finally, we mention that a significant step
towards derandomization was recently made by Micciancio [23]: he strengthened our results by showing
reductions with only one-sided error.

1.5 Outline

The rest of the paper is organized as follows. In Section 2 we gather some background on lattices and on
the central tool in this paper—the tensor product of lattices. In Section 3 we prove Theorem 1.1. For
the sake of completeness, Section 4 provides a summary of Khot’s work [19] together with the minor
modifications that we need to introduce.

2 Preliminaries

2.1 Lattices

A lattice is a discrete additive subgroup of Rn. Equivalently, it is the set of all integer combinations

L(b1, . . . ,bm) =

{
m

∑
i=1

xi bi : xi ∈ Z for all 1≤ i≤ m

}

of m linearly independent vectors b1, . . . ,bm in Rn (n≥ m). If the rank m equals the dimension n, then
we say that the lattice is full-rank. The set {b1, . . . ,bm} is called a basis of the lattice. Note that a lattice
has many possible bases. We often represent a basis by an n×m matrix B having the basis vectors as
columns, and we say that the basis B generates the lattice L. In such case we write L= L(B). It is well
known and easy to verify that two bases B1 and B2 generate the same lattice if and only if B1 = B2U for
some unimodular matrix U ∈ Zm×m (i. e., a matrix whose entries are all integers and whose determinant
is±1). The determinant of a lattice generated by a basis B is det(L(B)) =

√
det(BT B). It is easy to show

that the determinant of a lattice is independent of the choice of basis and is thus well-defined. A sublattice
of L is a lattice L(S)⊆ L generated by some linearly independent lattice vectors S = {s1, . . . ,sr} ⊆ L.
It is known that any integer matrix B can be written as [H 0]U where H has full column rank and U is
unimodular. One way to achieve this is by using the Hermite Normal Form (see, e. g., [12, Page 67]).

For any 1≤ p < ∞, the `p norm of a vector x ∈ Rn is defined as ‖x‖p =
p
√

∑i |xi|p and its `∞ norm is
‖x‖∞ = maxi |xi|. One basic parameter of a lattice L, denoted by λ

(p)
1 (L), is the `p norm of a shortest

nonzero vector in it. Equivalently, λ
(p)
1 (L) is the minimum `p distance between two distinct points in

the lattice L. This definition can be generalized to define the ith successive minimum as the smallest r
such that Bp(r) contains i linearly independent lattice points, where Bp(r) denotes the `p ball of radius r
centered at the origin. More formally, for any 1≤ p≤ ∞, we define

λ
(p)
i (L) = min

{
r : dim

(
span

(
L∩Bp(r)

))
≥ i
}
.

We often omit the superscript in λ
(p)
i when p = 2.
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In 1896, Hermann Minkowski [28] proved the following classical result, known as Minkowski’s First
Theorem. We consider here the `2 norm, although the result has an easy extension to other norms. For a
simple proof the reader is referred to [24, Chapter 1, Section 1.3].

Theorem 2.1 (Minkowski’s First Theorem). For any rank-r lattice L,

det(L)≥
(

λ1(L)√
r

)r

.

Our hardness of approximation results will be shown through the promise version GapSVPp
γ , defined

for any 1≤ p≤ ∞ and for any approximation factor γ ≤ 1 as follows.

Definition 2.2 (Shortest Vector Problem). An instance of GapSVPp
γ is a pair (B,s), where B is a lattice

basis and s is a number. In YES instances λ
(p)
1 (L(B))≤ γ · s, and in NO instances λ

(p)
1 (L(B))> s.

2.2 Tensor product of lattices

A central tool in the proof of our results is the tensor product of lattices. Let us first recall some basic
definitions. For two column vectors u and v of dimensions n1 and n2 respectively, we define their tensor
product u⊗ v as the n1n2-dimensional column vector u1v

...
un1v

 .

If we think of the coordinates of u⊗v as arranged in an n1×n2 matrix, we obtain the equivalent description
of u⊗ v as the matrix u · vT . More generally, any n1n2-dimensional vector w can be written as an n1×n2
matrix W . To illustrate the use of this notation, notice that if W is the matrix corresponding to w then

‖w‖2
2 = tr(W W T ) . (2.1)

Finally, for an n1×m1 matrix A and an n2×m2 matrix B, one defines their tensor product A⊗B as the
n1n2×m1m2 matrix  A11B · · · A1m1B

...
...

An11B · · · An1m1B

 .

Let L1 be a lattice generated by the n1×m1 matrix B1 and L2 be a lattice generated by the n2×m2
matrix B2. Then the tensor product of L1 and L2 is defined as the n1n2-dimensional lattice generated
by the n1n2×m1m2 matrix B1⊗B2, and is denoted by L= L1⊗L2. Equivalently, L is generated by the
m1m2 vectors obtained by taking the tensor product of two column vectors, one from B1 and one from B2.
If we think of the vectors in L as n1×n2 matrices, then we can also define it as

L= L1⊗L2 = {B1XBT
2 : X ∈ Zm1×m2} ,
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with each entry in X corresponding to one of the m1m2 generating vectors. We will mainly use this
definition in the proof of the main result.

As alluded to before, in the present paper we are interested in the behavior of the shortest nonzero
vector in a tensor product of lattices. It is easy to see that for any 1≤ p≤ ∞ and any two lattices L1 and
L2, we have

λ
(p)
1 (L1⊗L2)≤ λ

(p)
1 (L1) ·λ (p)

1 (L2). (2.2)

Indeed, any two vectors v1 and v2 satisfy ‖v1⊗ v2‖p = ‖v1‖p · ‖v2‖p. Applying this to shortest nonzero
vectors of L1 and L2 implies inequality (2.2).

Inequality (2.2) has an analogue for linear codes, with λ
(p)
1 replaced by the minimum distance of

the code under the Hamming metric. There, it is not too hard to show that the inequality is in fact an
equality: the minimal distance of the tensor product of two linear codes always equals to the product
of their minimal distances. However, contrary to what one might expect, there exist lattices for which
inequality (2.2) is strict. More precisely, for any sufficiently large n there exist n-dimensional lattices L1
and L2 satisfying

λ1(L1⊗L2)< λ1(L1) ·λ1(L2) .

The following lemma due to Steinberg shows this fact. Although we do not use this fact later on, the
proof is instructive and helps motivate the need for a careful analysis of tensor products. To present this
proof we need the notion of a dual lattice. For a full-rank lattice L⊆ Rn, its dual lattice L∗ is defined as

L∗ = {x ∈ Rn : 〈x,y〉 ∈ Z for all y ∈ L} .

A self-dual lattice is one that satisfies L= L∗. It can be seen that for a full-rank lattice L generated by a
basis B, the basis (B−1)T generates the lattice L∗.

Lemma 2.3 ([27, Page 48]). For any n≥ 1 there exists an n-dimensional self-dual lattice L satisfying
λ1(L⊗L∗)≤

√
n and λ1(L) = λ1(L

∗) = Ω(
√

n).

Proof. We first show that for any full-rank n-dimensional lattice L, λ1(L⊗L∗)≤
√

n. Let L be a lattice
generated by a basis B = (b1, . . . ,bn). Let (B−1)T = (b̃1, . . . , b̃n) be the basis generating its dual lattice
L∗. Now consider the vector ∑

n
i=1 bi⊗ b̃i ∈ L⊗L∗. Using our matrix notation, this vector can be written

as
BIn((B−1)T )T = BB−1 = In ,

and clearly has `2 norm
√

n. To complete the proof, we need to use the (non-trivial) fact that for any
n≥ 1 there exists a full-rank, n-dimensional and self-dual lattice with shortest nonzero vector of norm
Ω(
√

n). This fact is due to Conway and Thompson; see [27, Page 46] for details.

3 Proof of results

The following is our main technical result. As we will show later, Theorem 1.1 follows easily by plugging
in appropriate values of k.
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Theorem 3.1. For any 1 ≤ p ≤ ∞ there exist c,C > 0 such that the following holds. There exists a
randomized reduction that takes as input a SAT instance and an integer k ≥ 1 and outputs a GapSVPp

γ

instance of dimension nCk with gap γ = 2−ck, where n denotes the size of the SAT instance. The reduction
runs in time polynomial in nCk and has two-sided error, namely, given a YES (resp., NO) instance it
outputs a YES (resp., NO) instance with probability 9/10.

In fact, we will only need to prove this theorem for the case p = 2 since, as is easy to see, the general
case follows from the following theorem (applied with, say, ε = 1/2).1

Theorem 3.2 ([30]). For any ε > 0, γ < 1 and 1 ≤ p ≤ ∞ there exists a randomized polynomial-time
reduction from GapSVP2

γ ′ to GapSVPp
γ , where γ ′ = (1− ε)γ .

3.1 Basic SVP

As already mentioned, our reduction is crucially based on a hardness result of a variant of SVP stemming
from Khot’s work [19]. Instances of this variant have properties that make it possible to amplify the gap
using the tensor product. The following theorem summarizes the hardness result on which our proof is
based. For a proof the reader is referred to Section 4.

Theorem 3.3 ([19]). There are a constant γ < 1 and a polynomial-time randomized reduction from SAT
to SVP outputting a lattice basis B, satisfying L(B)⊆ Zn for some integer n, and an integer d, such that:

1. For any YES instance of SAT, with probability at least 9/10, λ1(L(B))≤ γ ·
√

d.

2. For any NO instance of SAT, with probability at least 9/10, for every nonzero vector v ∈ L(B),

• v has at least d nonzero coordinates, or
• all coordinates of v are even and at least d/4 of them are nonzero, or
• all coordinates of v are even and ‖v‖2 ≥ d.

In particular, λ1(L(B))≥
√

d.

3.2 Boosting the SVP hardness factor

As mentioned before, we boost the hardness factor using the tensor product of lattices. For a lattice L we
denote by L⊗k the k-fold tensor product of L. An immediate corollary of inequality (2.2) is that if (B,d)
is a YES instance of the SVP variant in Theorem 3.3, and L= L(B), then

λ1(L
⊗k)≤ γ

kdk/2. (3.1)

For the case in which (B,d) is a NO instance we will show that any nonzero vector of L⊗k has norm at
least dk/2, i. e.,

λ1(L
⊗k)≥ dk/2. (3.2)

This yields a gap of γk between the two cases. Inequality (3.2) easily follows by induction from the
central lemma below, which shows that NO instances “tensor nicely.”

1We note that our results can be shown directly for any 1 < p < ∞ without using Theorem 3.2 by essentially the same proof.
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Lemma 3.4. Let (B,d) be a NO instance of the SVP variant given in Theorem 3.3, and denote by L1 the
lattice generated by the basis B. Then for any lattice L2,

λ1(L1⊗L2)≥
√

d ·λ1(L2) .

The proof of this lemma is based on some properties of sublattices of NO instances which are
established in the following claim.

Claim 3.5. Let (B,d) be a NO instance of the SVP variant given in Theorem 3.3, and let L⊆ L(B) be a
sublattice of rank r > 0. Then at least one of the following properties holds:

1. Every basis matrix of L has at least d nonzero rows (i. e., rows that are not all zero).

2. Every basis matrix of L contains only even entries and has at least d/4 nonzero rows.

3. det(L)≥ dr/2.

Proof. Assume that L does not have either of the first two properties. Our goal is to show that the third
property holds. Since the first property does not hold, we have r < d and also that any vector in L has
fewer than d nonzero coordinates. By Theorem 3.3, this implies that L ⊆ 2 ·Zn. By the assumption
that the second property does not hold, there must exist a basis of L that has fewer than d/4 nonzero
rows. Therefore, all nonzero vectors in L have fewer than d/4 nonzero coordinates, and hence have
norm at least d, again by Theorem 3.3. We conclude that λ1(L)≥ d, and by Minkowski’s First Theorem
(Theorem 2.1) and r < d we have

det(L)≥
(

λ1(L)√
r

)r

≥ dr/2.

Proof of Lemma 3.4. Let v be an arbitrary nonzero vector in L1⊗L2. Our goal is to show that ‖v‖2 ≥√
d ·λ1(L2). We can write v in matrix notation as B1XB2

T , where the integer matrix B1 is a basis of
L1, B2 is a basis of L2, and X is an integer matrix of coefficients. Let U be a unimodular matrix for
which X = [H 0]U , where H is a matrix with full column rank. Thus, the vector v can be written as
B1[H 0](B2UT )T . Since UT is also unimodular, the matrices B2 and B2UT generate the same lattice. Now
remove from B2UT the columns corresponding to the zero columns in [H 0] and denote the resulting
matrix by B′2. Furthermore, denote the matrix B1H by B′1. Observe that both of the matrices B′1 and B′2
are bases of the lattices they generate, i. e., they have full column rank. The vector v equals B′1B′2

T , where
L′1 := L(B′1)⊆ L1 and L′2 := L(B′2)⊆ L2.

Claim 3.5 guarantees that the lattice L′1 defined above has at least one of the three properties
mentioned in the claim. We show that ‖v‖2 ≥

√
d ·λ1(L

′
2) in each of these three cases. Then, by the fact

that λ1(L
′
2)≥ λ1(L2), the lemma will follow.

Case 1: Assume that at least d of the rows in the basis matrix B′1 are nonzero. Thus, at least d of the
rows of B′1B′2

T are nonzero lattice points from L′2, and thus

‖v‖2 ≥
√

d ·λ1(L
′
2) .
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Case 2: Assume that the basis matrix B′1 contains only even entries and has at least d/4 nonzero rows.
Hence, at least d/4 of the rows of B′1B′2

T are even multiples of nonzero lattice vectors from L′2.
Therefore, every such row has `2 norm at least 2 ·λ1(L

′
2), and it follows that

‖v‖2 ≥
√

d
4
·2 ·λ1(L

′
2) =

√
d ·λ1(L

′
2) .

The third case is based on the following central claim, which is similar to Proposition 1.1 in [13]. The
proof is based on an elementary matrix inequality relating the trace and the determinant of a symmetric
positive semidefinite matrix (see, e. g., [9, Page 47]).

Claim 3.6. Let L1 and L2 be two rank-r lattices generated by the bases U = (u1, . . . ,ur) and W =
(w1, . . . ,wr) respectively. Consider the vector v = ∑

r
i=1 ui⊗wi in L1⊗L2, which can be written as

UIrW T =UW T in matrix notation. Then,

‖v‖2 ≥
√

r ·
(
det(L1) ·det(L2)

)1/r
.

Proof. Define the two r× r symmetric positive definite matrices G1 = UTU and G2 = W TW (known
as the Gram matrices of U and W ). By the fact that tr(AB) = tr(BA) for any matrices A and B and by
equation (2.1),

‖v‖2
2 = tr

(
(UW T )(UW T )T )= tr(G1G2) = tr

(
G1G1/2

2 G1/2
2

)
= tr

(
G1/2

2 G1G1/2
2

)
,

where G1/2
2 is the positive square root of G2. The matrix G = G1/2

2 G1G1/2
2 is also symmetric and positive

definite, and as such it has r real and positive eigenvalues. We can thus apply the inequality of arithmetic
and geometric means on these eigenvalues to get

‖v‖2
2 = tr(G)≥ r det(G)1/r = r ·

(
det(G1) ·det(G2)

)1/r
.

Taking the square root of both sides of this equation completes the proof.

Equipped with Claim 3.6 we turn to deal with the third case. In order to bound from below the norm
of v, we apply the claim to its matrix form B′1B′2

T with the lattices L′1 and L′2 as above.

Case 3: Assume that the lattice L′1 satisfies det(L′1) ≥ dr/2, where r denotes its rank. Combining
Claim 3.6 and Minkowski’s First Theorem we have that

‖v‖2 ≥
√

r ·
(
det(L′1) ·det(L′2)

)1/r ≥
√

r · (dr/2)1/r · λ1(L
′
2)√

r
=
√

d ·λ1(L
′
2) ,

and this completes the proof of the lemma.
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3.3 Proof of the main theorem

Proof of Theorem 3.1. Recall that it suffices to prove the theorem for p = 2. Given a SAT instance of size
n, we apply the reduction from Theorem 3.3 and obtain in time poly(n) a pair (B,d) where B is a basis of
a poly(n)-dimensional lattice. We then output (B⊗k,dk), where B⊗k is the k-fold tensor product of B, i. e.,
a basis of the lattice L(B)⊗k. The dimension of this lattice is poly(nk), and combining inequalities (3.1)
and (3.2) we infer a gap of 2−ck.

Proof of Theorem 1.1. For item 1, choose k to be a sufficiently large constant and apply Theorem 3.1.
This shows that any constant factor approximation algorithm to SVP implies a two-sided error algorithm
for SAT. Using known self-reducibility properties of SAT (see, e. g., [29, Chapter 11]), this also implies
a one-sided error polynomial-time algorithm for SAT. For item 2, apply Theorem 3.1 with k = (logn)1/ε

(where n is the size of the input SAT instance) and let N = nCk be the dimension of the output lattice.
Since

k =
(

logN
C

) 1
1+ε

>

(
logN

C

)1−ε

,

the gap we obtain as a function of the dimension N is 2Ω((logN)1−ε ). Therefore, an algorithm that
approximates SVP better than this gap implies a randomized SAT algorithm running in time 2poly(logn),
and hence the desired containment NP ⊆ RTIME(2poly(logn)). Item 3 follows similarly by applying
Theorem 3.1 with k = nδ for all δ > 0.

4 Proof of Theorem 3.3

In this section we prove Theorem 3.3. The proof is essentially the same as the one in [19] with minor
modifications.

4.1 Comparison with Khot’s theorem

For the reader familiar with Khot’s proof, we now describe how Theorem 3.3 differs from the one in [19].
First, our theorem is only stated for the `2 norm (since we use Theorem 3.2 to extend the result to other
norms). Second, the YES instances of Khot had another property that we do not need here (namely, that
the coefficient vector of the short lattice vector is also short). Third, as a result of the augmented tensor
product, Khot’s theorem includes an extra parameter k that specifies the number of times the lattice is
supposed to be tensored with itself. Since we do not use the augmented tensor product, we simply fix
k to be some constant. In more detail, we choose the number of columns in the BCH code to be dO(1),
as opposed to dO(k). This eventually leads to our improved hardness factor. Finally, the third possibility
in our NO case is different from the one in Khot’s theorem (which says that there exists a coordinate
with absolute value at least dO(k)). We note that coordinates with huge values are used several times in
Khot’s construction in order to effectively restrict a lattice to a subspace. We instead work directly with
the restricted lattice, making the reduction somewhat cleaner.
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4.2 The proof

The proof of Theorem 3.3 proceeds in three steps. In the first, a variant of the Exact Set Cover problem,
which is known to be NP-hard, is reduced to a gap variant of CVP. In the second step we construct a basis
Bint of a lattice which, informally, contains many short vectors in the YES case, and few short vectors in
the NO case. Finally, in the third step we complete the reduction by taking a random sublattice.

4.2.1 Step 1

First, consider the following variant of Exact Set Cover. Let η > 0 be an arbitrarily small constant.
An instance of the problem is a pair (S,d), where S = {S1, . . . ,Sn′} is a collection of subsets of some
universe [n′′] = {1, . . . ,n′′}, and d is a positive integer. In YES instances, there exists S′ ⊆ S of size ηd
that covers each element of the universe exactly once. In NO instances, there is no S′ ⊆ S of size less
than d that covers all elements of the universe. This problem is known to be NP-hard for an arbitrarily
small 0 < η < 1 and for n′ = O(d) [8]. Moreover, it is easy to see that the problem remains NP-hard if
we fix η to be any negative power of 2 and restrict d to be a power of 2. Thus, to prove Theorem 3.3, it
suffices to reduce from this problem.

In the first step we use a well-known reduction from the above variant of Exact Set Cover to a variant
of CVP. For an instance (S,d) we identify S with the n′′×n′ matrix over {0,1} whose columns are the
characteristic vectors of the sets in S. The reduction outputs an instance (BCVP, t), where BCVP is a basis
generating the lattice {y ∈ Zn′ : Sy = 0} and t is some integer vector satisfying St =−(1,1, . . . ,1). (If no
such t exists, the reduction outputs an arbitrary NO instance.) We note that given S the basis BCVP can be
constructed in polynomial time (see, e. g., [22, Lemma 3.1]).

Lemma 4.1. If (S,d) is a YES instance of the above variant of Exact Set Cover, then there is a lattice
vector z ∈ L(BCVP) such that z− t is a {0,1} vector and has exactly ηd coordinates equal to 1. If (S,d)
is a NO instance, then for any lattice vector z ∈ L(BCVP) and any nonzero integer j0, the vector z+ j0t
has at least d nonzero coordinates.

Proof. If (S,d) is a YES instance then there exists a vector y ∈ {0,1}n′ with exactly ηd coordinates equal
to 1 for which Sy=(1,1, . . . ,1). This implies that S(y+t)= 0, so z= y+t is the required lattice vector. On
the other hand, if (S,d) is a NO instance, then for any z∈L(BCVP) we have S(z+ j0t) =− j0 ·(1,1, . . . ,1).
This implies that the nonzero coordinates of z+ j0t correspond to a cover S′ ⊆ S of all elements in [n′′],
and hence their number must be at least d.

4.2.2 Step 2

The second step of the reduction is based on BCH codes, as described in the following theorem.

Theorem 4.2 ([5, Page 255]). Let N,d,h be integers satisfying h = (d/2) log2 N. Then there exists an
efficiently constructible matrix PBCH of size h×N with {0,1} entries such that the rows of the matrix are
linearly independent over GF(2) and any d columns of the matrix are linearly independent over GF(2).

Let BBCH be a basis of the lattice {y ∈ ZN : (PBCH)y ≡ 0 (mod 2)}. Such a basis can be easily
constructed in polynomial time by duality (see the preliminaries in [25]). The next lemma states some
properties of this lattice.
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Lemma 4.3. Every nonzero vector in L(BBCH) either has at least d nonzero coordinates or all of its
coordinates are even. Also, for any r ≥ 1 it is possible to find in polynomial time with probability at least
99/100 a vector s ∈ {0,1}N , such that there are at least

1
100 ·2h

(
N
r

)
distinct lattice vectors z ∈L(BBCH) satisfying that z− s is a {0,1} vector with exactly r coordinates equal
to 1.

Proof. Let y ∈ L(BBCH) be a nonzero lattice vector. Observe that if y has an odd coordinate then its odd
coordinates correspond to column vectors of PBCH that sum to the zero vector over GF(2). Therefore,
their number must be at least d. This proves the first statement.

We now prove the second statement. Consider the set L(BBCH)∩{0,1}N whose size is 2N−h (since
as a subset of GF(2)N it is the kernel of PBCH whose dimension is N−h). In order to choose s we first
uniformly pick a vector in this set and then we uniformly pick r of its coordinates and flip them. For a
vector s ∈ {0,1}N let As denote the number of ways in the above process to obtain s among the 2N−h ·

(N
r

)
possible ways. The probability that the chosen s satisfies

As ≤
1

100 ·2h

(
N
r

)
is ∑

s s.t. As≤ 1
100·2h (

N
r)

As

2N−h
(N

r

) ≤ 2N ·
1

100·2h

(N
r

)
2N−h

(N
r

) ≤ 1
100

,

thus with probability at least 99/100 we obtain an s that satisfies

As >
1

100 ·2h

(
N
r

)
.

It remains to notice that such an s also satisfies the requirement in the statement of the lemma (since from
each vector in {0,1}N of Hamming distance r from s we can obtain z ∈ L(BBCH) as in the statement by
simply adding 2 to a subset of its coordinates).

We now construct the intermediate lattice generated by a basis matrix Bint (see Figure 1). Let η be a
sufficiently small constant, say 1/128. Let r = (3/4+η)d and choose s as in Lemma 4.3. We choose the
parameters of BBCH to be N = d2/η , d, and h = (d/2) log2 N. Consider a matrix whose upper left block
is 2 ·BCVP, whose lower right block is BBCH, and whose other entries are zeros. Adding to this matrix the
column given by the concatenation of 2 · t and s, we obtain the basis matrix Bint of the intermediate lattice.

The following two lemmas describe the properties of L(Bint). The first one states that if the CVP
instance is a YES instance then L(Bint) contains many short vectors. Define γ = (3/4+5η)1/2 < 1. A
nonzero lattice vector of L(Bint) is called good if it has `2 norm at most γ ·

√
d, has {0,1,2} coordinates,

and has at least one coordinate equal to 1.

Lemma 4.4. If the CVP instance is a YES instance and the vector s has the property from Lemma 4.3,
then there are at least 1

100·2h

(N
r

)
good lattice vectors in L(Bint).
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2BCVP 2t

sBBCHNN

n′

Figure 1: Bint

Proof. Assume that the CVP instance is a YES instance. By Lemma 4.1, this implies that there exists y
such that BCVPy− t is a {0,1} vector and has exactly ηd coordinates equal to 1. Let s be as in Lemma 4.3,
so there are at least 1

100·2h

(N
r

)
distinct choices of x for which (BBCH)x− s is a {0,1} vector with exactly r

coordinates equal to 1. For every such x, the lattice vector2

Bint(y◦ x◦ (−1)) =
(
2(BCVPy− t)◦ ((BBCH)x− s)

)
has {0,1,2} coordinates, has at least one coordinate equal to 1, and has `2 norm

√
4ηd + r = γ ·

√
d, as

required.

The second lemma shows that if the CVP instance is a NO instance then L(Bint) contains few vectors
that do not have the property from Theorem 3.3, Item 2. We call such vectors annoying. In more detail, a
lattice vector of L(Bint) is annoying if it satisfies all of the following:

• The number of its nonzero coordinates is smaller than d.

• Either it contains an odd coordinate or the number of its nonzero coordinates is smaller than d/4.

• Either it contains an odd coordinate or it has norm smaller than d.

Lemma 4.5. If the CVP instance is a NO instance, then there are at most dd/4 ·
(N+n′

d/4

)
annoying lattice

vectors in L(Bint).

Proof. Assume that the CVP instance is a NO instance and let Bintx be an annoying vector with coefficient
vector x = y◦ z◦ ( j0). We have

Bintx = 2(BCVPy+ j0t)◦ (BBCHz+ j0s) .

By Lemma 4.1, if j0 6= 0 then the vector BCVPy+ j0t has at least d nonzero coordinates, so it is not an
annoying vector. Thus we can assume that j0 = 0 and therefore Bintx = 2(BCVPy)◦ (BBCHz).

2We use ◦ to denote concatenation of vectors.
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Since Bintx is annoying we know that it has fewer than d nonzero coordinates, so by Lemma 4.3 we
get that all coordinates of Bintx are even. Again by the definition of an annoying vector, we conclude that
fewer than d/4 of the coordinates of Bintx are nonzero and all of them have absolute value smaller than d.
Thus, we get a bound of dd/4 ·

(N+n′
d/4

)
on the number of possible choices for Bintx, and this completes the

proof of the lemma.

4.2.3 Step 3

In the third step we construct the final SVP instance as claimed in Theorem 3.3. By Lemma 4.4, the
number of good vectors in the YES case is at least

1
100 ·2h

(
N
r

)
=

1
100 ·2(d log2 N)/2

(
N

(3/4+η)d

)
≥ N(3/4+η)d

100 ·dd ·Nd/2 =
N(1/4+η)d

100 ·dd =: G .

By Lemma 4.5, in the NO case there are at most A := dd/4 ·
(N+n′

d/4

)
annoying vectors. By our choice of N

and the fact that n′ = O(d), for sufficiently large d we have n′ ≤ N and hence

A≤ dd/4 · (2N)d/4 ≤ 10−5 ·G .

Choose a prime q in the interval [100A,G/100] and let w ∈ Zn′+N be a vector whose coordinates are
chosen randomly and uniformly from the range {0, . . . ,q−1}. The final output of the reduction is a basis
B of the lattice {x ∈ L(Bint) : 〈w,x〉 ≡ 0 (mod q)}.

Lemma 4.6. If the CVP instance is a YES instance and the vector s has the property from Lemma 4.3,
then with probability at least 99/100 over the choice of the vector w, there exists a lattice vector in L(B)
with `2 norm at most γ ·

√
d.

Proof. If the CVP instance is a YES instance and s has the property from Lemma 4.3, then by Lemma 4.4
there are at least G good vectors in L(Bint), i. e., vectors with `2 norm at most γ ·

√
d, coordinates

from {0,1,2}, and at least one coordinate equal to 1. For each good vector x, consider the event that
〈w,x〉 ≡ 0 (mod q). Since a good vector is nonzero, we clearly have that each such event occurs with
probability 1/q. Moreover, observe that these vectors are pairwise linearly independent modulo q and
therefore these events are pairwise independent. Therefore, using Chebyshev’s Inequality, with probability
at least 1−q/G≥ 99/100, at least one of these events happens, and we are done.

Lemma 4.7. If the CVP instance is a NO instance, then with probability at least 99/100 over the choice
of the vector w, for every nonzero lattice vector v ∈ L(B),

• v has at least d nonzero coordinates, or

• all coordinates of v are even and at least d/4 of them are nonzero, or

• all coordinates of v are even and ‖v‖2 ≥ d.

Proof. The probability that a nonzero lattice vector x ∈ L(Bint) satisfies 〈w,x〉 ≡ 0 (mod q) is 1/q. By
the union bound, the probability that at least one of the annoying vectors of L(Bint) belongs to L(B) is at
most A/q≤ 1/100. Therefore, with probability at least 99/100, no lattice vector in L(B) is annoying,
and the lemma follows.
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Lemmas 4.6 and 4.7 imply Theorem 3.3.
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