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NOTE

A Simple Proof of Toda’s Theorem∗
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Abstract: Toda in his celebrated paper showed that the polynomial-time hierarchy is
contained in P#P. We give a short and simple proof of the first half of Toda’s Theorem that
the polynomial-time hierarchy is contained in BPP⊕P. Our proof uses easy consequences
of relativizable proofs of results that predate Toda.

For completeness we also include a proof of the second half of Toda’s Theorem.
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1 Introduction

In 1991, Toda proved his celebrated theorem [7].

Theorem 1.1 (Toda). PH⊆ P#P.

Here PH is the set of languages in the polynomial-time hierarchy.
The proof of Theorem 1.1 follows from the following two lemmas (since BPPA ⊆ PPA for all A).

Lemma 1.2 (Toda). PH⊆ BPP⊕P.

Lemma 1.3 (Toda). PP⊕P ⊆ P#P.

In this paper we give a short proof of Lemma 1.2 using relativizable versions of results that predate
Toda’s Theorem. For completeness we will give a proof of Lemma 1.3 as well.

∗This result first appeared in the Computational Complexity weblog [5].
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2 Preliminaries

The Complexity Zoo [1] and the Arora-Barak textbook [2] are good sources for descriptions of the
complexity classes used in this note.

To relativize Satisfiability to an oracle A, we allow our CNF formulas to have predicates A0,A1,A2, . . .
where An is an n-ary predicate defined so An(x1, . . . ,xn) is true exactly when x1 . . .xn is in A. For every
A, SATA is NPA-complete.

If C and D are relativizable classes, CD = ∪A∈DCA. If D has a complete set D (such as D = ⊕P)
then CD = CD.

When we relativize a class like BPP⊕P to an oracle A, both the BPP and the ⊕P machines should
have access to the oracle A. The BPP machine can make its queries to A via the ⊕PA oracle so we have
(BPP⊕P)A = BPP(⊕PA) which we will write simply as BPP⊕PA

.
We define the polynomial-time hierarchy relative to A recursively:

• ΣA
0 = PA.

• ΣA
i+1 = NPΣA

i .

• PHA = ∪iΣ
A
i .

The class GapP is the set of #P functions closed under subtraction. In particular GapP functions may
take on negative values. Like #P, GapP functions are closed under uniform exponential-sized sums and
polynomial-sized products and unlike #P, GapP functions are also closed under subtraction [3].

3 Proof of Toda’s first lemma

We start with the following three results, all of which have proofs that easily relativize.

Theorem 3.1 (Valiant-Vazirani [8]). There is a probabilistic polynomial-time procedure that, given a
Boolean formula φ , will output formulas ψ1, . . . ,ψk such that

• if φ is not satisfiable then, for every i, ψi is not satisfiable;

• if φ is satisfiable then, with high probability, for some i, ψi has exactly one solution.

Theorem 3.2 (Papadimitriou-Zachos [6]). ⊕P⊕P =⊕P.

Theorem 3.3 (Zachos [9]). If NP⊆ BPP then PH⊆ BPP.

We first need the following easy consequence of Theorem 3.1 noted by Toda [7].

Lemma 3.4 (Valiant-Vazirani, Toda). NP⊆ BPP⊕P.

Proof Sketch. Given a Boolean formula φ , randomly choose ψ1, . . . ,ψk (as in Theorem 3.1) and accept if
any of the ψi have an odd number of satisfying assignments. Lemma 3.4 now follows from Theorem 3.1.
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Proof of Lemma 1.2.

1. By relativizing Lemma 3.4, we have

NP⊕P ⊆ BPP⊕P⊕P
.

2. Now apply Theorem 3.2 to get
NP⊕P ⊆ BPP⊕P .

3. By relativizing Theorem 3.3, we have

NP⊕P ⊆ BPP⊕P ⇒ PH⊕P ⊆ BPP⊕P .

4. Combining (2) and (3) we have
PH⊆ PH⊕P ⊆ BPP⊕P .

If we had replaced the use of Theorem 3.3 with the relativizable proof of it, we would essentially
recover Toda’s original proof.

4 Proof of Toda’s second lemma

For completeness we include a proof of Lemma 1.3 in this section. We give a GapP-based variant of
Toda’s original proof [7] originally given in a survey paper by the author [4].

We will use the following GapP characterization of ⊕P [3].

Lemma 4.1 (Fenner-Fortnow-Kurtz). A language B is in ⊕P if and only if there is a GapP function f
such that

• if x ∈ B then f (x)≡ 1 (mod 2);

• if x 6∈ B then f (x)≡ 0 (mod 2).

We can define PPA using PA predicates.

Lemma 4.2. A language L is in PPA if and only if there is a language B ∈ PA and a polynomial q such
that

• if x ∈ L then ∣∣{y ∈ Σ
q(|x|) (x,y) ∈ B

}∣∣≥ ∣∣{y ∈ Σ
q(|x|) (x,y) 6∈ B

}∣∣.
• if x 6∈ L then ∣∣{y ∈ Σ

q(|x|) (x,y) ∈ B
}∣∣ <

∣∣{y ∈ Σ
q(|x|) (x,y) 6∈ B

}∣∣.
Combining Lemmas 4.1 and 4.2 with Theorem 3.2 (which implies P⊕P =⊕P) we have the following

characterization of PP⊕P.
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Lemma 4.3. A language L is in PP⊕P if and only if there is a GapP function f (x,y) and a polynomial q
such that

• if x ∈ L then∣∣{y ∈ Σ
q(|x|) f (x,y)≡ 1 (mod 2)

}∣∣≥ ∣∣{y ∈ Σ
q(|x|) f (x,y)≡ 0 (mod 2)

}∣∣ .
• if x 6∈ L then∣∣{y ∈ Σ

q(|x|) f (x,y)≡ 1 (mod 2)
}∣∣ <

∣∣{y ∈ Σ
q(|x|) f (x,y)≡ 0 (mod 2)

}∣∣ .
We give an FPGapP algorithm to compute∣∣{y ∈ Σ

q(|x|) f (x,y)≡ 1 (mod 2)
}∣∣

and ∣∣{y ∈ Σ
q(|x|) f (x,y)≡ 0 (mod 2)

}∣∣ .
Lemma 1.3 follows since FPGapP = FP#P [3].

Consider the polynomial g(m) = 3m2−2m3. Let g(k)(m) =

k︷ ︸︸ ︷
g(g(. . .g(m) . . .)).

Lemma 4.4. For all m,

1. if m≡ 0 (mod 2 j) then g(m)≡ 0 (mod 22 j),

2. if m≡ 1 (mod 2 j) then g(m)≡ 1 (mod 22 j),

3. if m≡ 0 (mod 2) then g(k)(m)≡ 0 (mod 22k
), and

4. if m≡ 1 (mod 2) then g(k)(m)≡ 1 (mod 22k
).

Proof. Items (1) and (2) follow from simple algebra, items (3) and (4) by induction using (1) and (2).

Let h(x,y) = g(1+dlogq(|x|)e)( f (x,y)). Since GapP functions are closed under uniform exponential-
size sums and polynomial-size products, h(x,y) is itself a GapP function and by Lemma 4.4

• if f (x,y)≡ 1 (mod 2) then h(x,y)≡ 1 (mod 2q(|x|)+1), and

• if f (x,y)≡ 0 (mod 2) then h(x,y)≡ 0 (mod 2q(|x|)+1).

Define r(x) as
r(x) = ∑

y∈Σq(|x|)

h(x,y) ,

also a GapP function. We then have

(r(x) mod 2q(|x|)+1) =
∣∣{y ∈ Σ

q(|x|) f (x,y)≡ 1 (mod 2)
}∣∣

and
2q(|x|)− (r(x) mod 2q(|x|)+1) =

∣∣{y ∈ Σ
q(|x|) f (x,y)≡ 0 (mod 2)

}∣∣,
completing the proof.

Remark 4.5. Toda uses #P functions and the polynomial g(m) = 4m3 + 3m4. Lemma 4.3 now holds
with each occurrence of “1” replaced by “−1.”
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