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Abstract: We give an explicit construction of a pseudorandom generator against low-
degree polynomials over finite fields. Pseudorandom generators against linear polynomials,
known as small-bias generators, were first introduced by Naor and Naor (STOC 1990). We
show that the sum of 2d independent small-bias generators with error ε2O(d)

is a pseudoran-
dom generator against degree-d polynomials with error ε . This gives a generator with seed
length 2O(d) log(n/ε) against degree-d polynomails. Our construction follows the break-
through result of Bogdanov and Viola (FOCS 2007). Their work shows that the sum of d
small-bias generators is a pseudo-random generator against degree-d polynomials, assum-
ing a conjecture in additive combinatorics, known as the inverse conjecture for the Gowers
norm. However, this conjecture was proven only for d = 2,3. The main advantage of this
work is that it does not rely on any unproven conjectures.

Subsequently, the inverse conjecture for the Gowers norm was shown to be false for
d ≥ 4 by Green and Tao (2008) and independently by the author, Roy Meshulam, and
Alex Samorodnitsky (STOC 2008). A revised version of the conjecture was proved by
Bergelson, Tao, and Ziegler (2009). Additionally, Viola (CCC 2008) showed the original
construction of Bogdanov and Viola to hold unconditionally.
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SHACHAR LOVETT

1 Introduction

We are interested in explicitly constructing pseudorandom generators (PRG) against low-degree poly-
nomials over small finite fields. A pseudorandom generator against a family T of tests is a function G
mapping a small domain into a (much) larger one, such that any test T ∈ T cannot distinguish, with no-
ticeable probability, a random element in the large domain from an application of G to a random element
in the small domain. We say a PRG requires R random bits if the size of the small domain is 2R.

In our case, F is a finite field and a test is a polynomial p(x1, . . . ,xn) over F. The image of the PRG
is a small subset of Fn, and it is pseudorandom against p(x1, . . . ,xn) if the distribution of the outcome of
p, when applied to a random element in the small subset, is close to the distribution of the outcome of p,
when applied to a uniform element in Fn. We say the PRG has error ε against p if the statistical distance
between the two distributions is at most ε . We are interested in PRGs that are pseudorandom against all
degree-d polynomials with error ε , and use as few random bits as possible.

The case of pseudorandom generators against linear polynomials, usually called small-bias gener-
ators (or epsilon-biased generators, a term we do not use in this paper to avoid confusion), was first
studied (over F = F2) by Naor and Naor [14] and later by Alon, Goldreich, Håstad and Peralta [1]. They
and others gave explicit constructions, which were later generalized to arbitrary finite fields. These con-
structions have a seed length which is optimal up to a constant multiplicative factor. The construction
of small-bias generators is a major tool in derandomization, PCPs and lower bounds (see [4] and the
references within for details regarding small-bias generators).

The generalization of the problem to constant-degree polynomials was first studied by Luby, Velick-
ovic, and Wigderson [13]. Their results apply, in fact, to the more general model of constant depth
circuits. In the context of constant degree polynomials, they give an explicit construction of PRG requir-
ing exp(O(

√
logn/ε)) random bits.

Bogdanov [6] gave a construction of a PRG in large fields. The minimum field size required for
his construction is polynomial in the degree, the required error and the log of the number of variables.
In these settings, his construction is optimal up to polynomial factors. The proof of his result uses
techniques and results from algebraic geometry and computational algebra.

Recently, Bogdanov and Viola [7] presented a novel approach for constructing a PRG for low-degree
polynomials over small fields. Their construction is the sum of d independent small-bias generators.
They showed that, if a conjecture in additive combinatorics called the inverse conjecture for the Gowers
norm holds, then their construction is a PRG for degree-d polynomials. At the time, the inverse con-
jecture for the Gowers norm was known to hold only for degrees 2 and 3, and was conjectured to hold
for all constant degrees. Thus, their construction was known to be correct only for quadratic and cubic
polynomials.

Our work [11] was inspired by the work of Bogdanov and Viola, with the goal of making their
construction unconditional, i. e., not relying on any unproven conjectures. We prove that the sum of 2d

independent small-bias generators is pseudorandom against degree-d polynomials, without relying on
any unproven conjectures. Our main theorem is:

Theorem 1.1. There exists a global constant c > 0 such that the following holds. Let G be a small-bias
generator with error ε2cd

. Then the sum of 2d independent copies of G is pseudorandom against degree-d
polynomials with error ε . In particular, this gives a pseudorandom generator for degree-d polynomials

THEORY OF COMPUTING, Volume 5 (2009), pp. 69–82 70

http://dx.doi.org/10.4086/toc


UNCONDITIONAL PSEUDORANDOM GENERATORS FOR LOW-DEGREE POLYNOMIALS

with error ε using 2cd log(|F |n/ε) random bits for the seed.

1.1 Overview of proof method

This work is inspired by the recent result of Bogdanov and Viola [7]. We begin by providing a high level
description of it, since several ideas used in [7] are also used in our work.

The analysis of [7] crucially depended on the inverse conjecture for the Gowers norm. Although
we do not use this conjecture in our proof, we now briefly present and discuss it. The Gowers norm,
first defined by Gowers in his new proof for Szemerédi’s theorem [8], is a norm measuring the local
correlation of a function to low-degree polynomials. Let F = Fq be a prime finite field, and assume
f (x) : Fn → F is a function. The directional derivative of f in direction y ∈ Fn is defined to be

fy(x) = f (x+y)− f (x).

Notice that if f is a degree-d polynomial, then fy is a polynomial of degree at most d − 1, hence the
term derivative relates to the more common definition of analytical derivative. We define also iterated
derivatives: fy1,...,yk(x) is defined recursively, by taking the k derivatives in directions y1, . . . ,yk. Opening
brackets, this gives

fy1,...,yk(x) = ∑
S⊂{1,...,k}

(−1)k−|S| f (x+∑
i∈S

yi).

The d-th Gowers norm of f is defined as

Ud( f ) =
(
Ex,y1,...yd∈Fn

q

[
ω

fy1,...,yd (x)
q

]) 1
2d

,

where ωq = e
2πi
q is a root of unity of order q. It was proved to be a norm on functions (for d ≥ 2) by

Gowers [8].
Assume f is a degree-(d − 1) polynomial. Taking d derivatives results in the zero polynomial, so

fy1,...,yd ≡ 0 for any choice of y1, . . . ,yd and consequently Ud( f ) = 1. It is relatively easy to see that the
converse also holds, that is, Ud( f ) = 1 iff f is a polynomial of degree at most d − 1. Alon et al. [2]
proved a robust version of this equivalence: the d-th Gowers norm of f is very close to 1 iff the function
f is very close to a degree-(d−1) polynomial.

The inverse conjecture for the Gowers norm studies the realm of functions with only a noticeable
Gowers norm, that is Ud( f ) ≥ δ for some δ > 0. Gowers [8] showed that if f is only somewhat close
to a degree-(d−1) polynomial, that is Prx[ f (x) = p(x)]≥ 1/q+ ε for some degree-(d−1) polynomial
p(x), then f has a noticeable d-th Gowers norm, Ud( f )≥ ε ′, where ε ′ = Ω(ε).

The converse of this claim is known as the inverse conjecture for the Gowers norm: if Ud( f ) ≥ ε ,
then there exists a degree-(d−1) polynomial p such that Prx[ f (x) = p(x)]≥ 1/q+ ε ′, for some ε ′ > 0
depending on ε . The case of d = 2 can be proven using standard Fourier analysis tools [3]. The case
of d = 3 was proven by Green and Tao [10] and independently by Samorodnitsy [15]. Both works
conjectured this to hold for any constant degree.

Returning to the argument of [7], Bogdanov and Viola analyze the Gowers norm of a degree-d
polynomial p(x), and present a win-win argument, depending on whether the Gowers norm is either
small or large. In the first case, when the Gowers norm is small, they show that the sum of d small-bias
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generators is pseudorandom against p(x), by relating the distribution of p(x1 + · · ·+ xd) to the Gowers
norm of p. In the latter case, when the Gowers norm is large, and assuming the inverse conjecture for
the Gowers norm holds, p(x) is correlated to some degree-(d − 1) polynomial q(x). They use q(x) in
order to construct a circuit that computes p(x) for almost all values of x. The inputs to this circuit are
all degree-(d− 1) polynomials; thus they show that a PRG for degree-(d− 1) polynomials with small
enough error is also pseudorandom against p(x).

Our construction follows similar lines; however, instead of analyzing the Gowers norm of p(x), we
analyze its Fourier coefficients. We also divide our treatment into two cases: when p has some large
Fourier coefficient, and when all the Fourier coefficients of p are small.

In the first case, when p(x) has no large Fourier coefficients, we consider inputs to p of the form
x+y, where x and y are independent. We consider the polynomial

∆p(x′,x′′,y′,y′′) = p(x′+y′)− p(x′+y′′)− p(x′′+y′)+ p(x′′+y′′) .

We prove that it is enough to be pseudorandom against ∆p in order to be pseudorandom against
p(x+y), and also that it is sufficient to have x, x′, x′′, y, y′ and y′′ come from a PRG that is pseudorandom
against degree-(d−1) polynomials. The reason is that ∆p contains no degree-d terms in just one of x′,
x′′, y′ or y′′. In the second case, when there is some large Fourier coefficient, we know that p(x) is
correlated to some linear function. Similarly to the second case in [7], we also show in that case, or
more generally when p(x) is correlated to some lower degree polynomial, a PRG for degree-(d − 1)
polynomials with small enough error is also pseudorandom against p(x). However, our proof technique
is more direct than the one used in [7], which results in better parameters and simpler analysis.

1.2 Subsequent work

This paper is a more polished version of the extended abstract of this work [11], first presented at STOC
2008. Subsequently, there were advances on two fronts.

First, the inverse conjecture for the Gowers norm was shown to be false for degrees≥ 4 by Green and
Tao [9] and independently by Lovett, Meshulam, and Samorodnitsky [12]. A revised inverse conjecture
for the Gowers norm was proved by Bergelson, Tao and Ziegler [5, 17].

Additionally, Viola [18] proved the correctness of the construction of [7] without using the inverse
conjecture for the Gowers norm, or any other unproven conjectures, thus making the original construc-
tion of [7] unconditionally correct. His proof method also follows similar lines to the works of [7]
and [11]. He considers p(x+y), where x comes from a distribution which is pseudorandom against
degree-(d−1) polynomials, and y is a small-bias generator (i. e., pseudorandom against linear polyno-
mials). He also uses a win-win analysis, based on the bias of the polynomial p, and proves that indeed
the sum x+y fools all degree-d polynomials.

The result presented here can thus be seen as an intermediate step in a sequence of works. The
proof of Viola uses some of the techniques developed in this work, in addition to some of the original
techniques introduced in [7] and some clever new ideas.
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2 Preliminaries

We work over an arbitrary finite field F. Let U =Un be the uniform distribution over Fn. We fix e : F→C
to be any non-trivial additive character. For example, in a prime field Fq we can have e(x) = ωx

q where

ωq = 2
2πi
q is a root of unity of order q. When we refer to the degree of a multivariate polynomial, we

always mean its total degree. We denote elements of Fn by x = (x1, . . . ,xn).

Definition 2.1. A distribution D over Fn is said to be pseudorandom against a polynomial p(x1, . . . ,xn)
with error ε if ∣∣∣Ex∈D

[
e(p(x))

]
−Ex∈U

[
e(p(x))

]∣∣∣ < ε .

Definition 2.2. A distribution D is said to be pseudorandom against degree-d polynomials with error ε

if for every degree-d polynomial p(x1, . . . ,xn), D is pseudorandom against p with error ε .

We study explicit constructions for pseudorandom generators against degree-d polynomials.

Definition 2.3. A function G : {0,1}r → Fn is said to be a pseudorandom-generator (PRG) against
degree-d polynomials if the distribution obtained by applying G to a uniform element in {0,1}r is a
pseudorandom distribution against degree-d polynomials. The value in {0,1}r is called the seed of G,
and r is the seed length of G.

The notion of pseudorandomness we use is different from more standard notions of pseudorandom-
ness. However, since we are working over small fields, they are tightly related. For example, the follow-
ing Lemma from [7] connects it with the common notion of pseudorandomness in statistical distance
(The proof in [7] is stated just for prime fields, but it remains correct over arbitrary fields):

Lemma 2.4 (Lemma 33 in [7]). Let D be a distribution that is pseudorandom against degree-d polyno-
mials with error ε . Let p(x1, . . . ,xn) be a polynomial of degree at most d. Let p(D) be the distribution,
taking values in F, obtained by applying p to an input chosen according to D, and similarly p(U) be
the distribution of applying p to a uniformly chosen input in Fn. Then the variation (statistical) distance
between p(D) and p(U) is bounded by 1

2 ε
√
|F |−1.

Remark 2.5. Definition 2.2 does not depend on which non-trivial character is used in Definition 2.1;
since we require pseudorandomness for all degree-d polynomials, we can multiply polynomials by any
non-zero constant, thus effectively achieving pseudorandomness for all non-trivial characters.

We use the Cauchy-Schwarz inequality over the complex numbers in the following form several
times in the proof.

Claim 2.6. Let Z be a random variable taking values in C, then∣∣E[Z]
∣∣2 ≤ E

[
|Z|2

]
.

Fourier analysis plays a central role in our proof. In the following we define Fourier coefficients,
and discuss several properties of them required in the proof. We refer to the first chapter of [16] for a
more in-depth introduction to Fourier analysis.
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Definition 2.7. The Fourier coefficients of a function f : Fn → C are defined to be

f̂α = Ex∈U
[

f (x)e(−〈α,x〉)
]
,

where α = (α1, . . . ,αn) ∈ Fn and 〈α,x〉= α1x1 + · · ·+αnxn is the inner product of α and x.

The set of functions {e(〈α,x〉) : α ∈ Fn} is an orthonormal basis of the Hermitian space of functions
Fn → C under the inner product

f ·g =
1

|Fn | ∑
x∈Fn

f (x)g(x) .

Therefore f can be expressed as
f (x) = ∑

α∈Fn
f̂αe(〈α,x〉) .

For a polynomial p(x) ∈ F[x1, . . . ,xn] we define p̂α to be the α Fourier coefficient of the function
e(p(x)), i. e.,

p̂α = Ex∈U
[
e(p(x)−〈α,x〉)

]
.

We will need the following simple fact, which follows from Parseval’s identity and the fact that
|e(p(x))|= 1 for all x ∈ Fn:

Fact 2.8. ∑
α∈Fn

|p̂α |2 = 1.

The basis elements of our analysis are PRGs for degree-1 polynomials. PRGs for this family have
been studied extensively, and are usually referred to as small-bias (or epsilon-biased) generators or
distributions. Formally we define:

Definition 2.9. A distribution D is called a small-bias distribution over Fn with error δ if for all linear
polynomials p(x) = a1x1 + · · ·+anxn we have∣∣∣Ex∈D

[
e(p(x))

]
−Ex∈U

[
e(p(x))

]∣∣∣ < δ . (2.1)

Constructions of small-bias distributions were first studied by Naor and Naor over F2 in [14], and
optimal up to constant constructions were later given by Alon, Goldreich, Håstad, and Peralta [1] over
general fields. Such constructions can be achieved by explicit pseudorandom generators with seed length
O(log(|F |n/ε)).

3 Main theorem

We restate our main theorem with explicit constants:

Theorem 3.1. Let G : {0,1}r → Fn be a small-bias generator over Fn with error (ε/10)4d
. Then the

sum of 2d independent copies of G is pseudorandom against degree-d polynomials with error ε . That is,
G′ : {0,1}r·2d → Fn defined as

G′(x1, . . . ,x2d ) = G(x1)+ . . .+G(x2d )

is a PRG against degree-d polynomials with error ε .
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Our proof is divided into two cases, based on whether p has some large Fourier coefficient, or does
not have any large Fourier coefficients. We show that when a degree-d polynomial p(x) has some large
Fourier coefficient, then a PRG for degree-(d−1) polynomials, with better error, is also pseudorandom
against p. On the other hand, if p has no large Fourier coefficients, it is “pseudorandom” in a sense, and
then the sum of two PRGs for degree-(d−1) is pseudorandom against p.

We divide the proof into two technical lemmas, dealing with the cases of whether p has some large
Fourier coefficient, or it does not.

Lemma 3.2. Let p(x1, . . . ,xn) be a degree-d polynomial over Fn, such that for all α ∈ Fn, |p̂α |< ε2/10.
Let D be a distribution that is pseudorandom against degree-(d − 1) polynomials with error ε4/400.
Then x+y, where x, y are independently chosen from D, is pseudorandom against p with error ε .

Lemma 3.3. Let p(x1, . . . ,xn) be a degree-d polynomial over Fn, such that |p̂α | ≥ ε2/10 for some
α ∈ Fn. Let D be a distribution that is pseudorandom against degree-(d − 1) polynomials with error
ε3/10. Then D is pseudorandom against p(x) with error ε .

Assuming these two lemmas, our main theorem now follows directly, by also using the following
simple observation. This observation allows us to add “extra” small-bias distributions without harming
our PRG construction.

Observation 3.4. Let D be a distribution that is pseudorandom against degree-d polynomials with error
ε . Let D′ be any other independent distribution. Then the distribution of x+y, where x ∈ D and y ∈ D′

is also pseudorandom against degree-d polynomials with error ε .

We now prove Theorem 3.1, assuming Lemmas 3.2 and 3.3 and Observation 3.4:

Proof. We prove, by induction on d, that the sum of 2d independent small-bias generators with error
(ε/10)4d

is pseudorandom against degree-d polynomials with error ε . For d = 1 this is clear. For d > 1,
let D′ be the distribution of sum of the first 2d−1 small-bias generators, which is also the distribution of
the sum of the last 2d−1 small-bias generators. Observe that by the inductive hypothesis, D′ is pseudo-
random against degree-(d−1) polynomials with error (ε/10)4 < min(ε4/400,ε3/10). Let p(x) be any
degree-d polynomial. Consider first the case that all the Fourier coefficients of p are at most ε2/10. By
Lemma 3.2, we know that the distribution of x+y, where x and y are chosen independently according
to D′, is pseudorandom against p with error ε . Alternatively, consider the case that there exists some
Fourier coefficient of p of absolute value at least ε2/10. By Lemma 3.3, D′ is pseudorandom against p,
and by Observation 3.4 so is the distribution of x+y, where x and y are chosen independently according
to D′.

The remainder of the paper is organized as follows: Lemma 3.2 is proven in Section 4 and Lemma 3.3
in Section 5.

4 Case I: No large Fourier coefficients

In this section we prove Lemma 3.2. We assume throughout this section that all the Fourier coefficients
of e(p(x)) are small, i. e., |p̂α |< ε2/10 for all α ∈ Fn.

We start by defining a derivation polynomial.

THEORY OF COMPUTING, Volume 5 (2009), pp. 69–82 75

http://dx.doi.org/10.4086/toc


SHACHAR LOVETT

Definition 4.1. Let p(x) : Fn → F be a polynomial. We define its derivation polynomial ∆p : (Fn)4 → F
as

∆p(x′,x′′,y′,y′′) = p(x′+y′)− p(x′′+y′)− p(x′+y′′)+ p(x′′+y′′) .

The following lemma is crucial to our analysis, and is a variation of a lemma proven in [7]. We
relate the distribution of evaluating p on the sum of two independent inputs to that of ∆p.

Lemma 4.2. Let p : Fn → F. Let D be a distribution over Fn. Let x, y be independently chosen from D,
then ∣∣Ex,y∈D[e(p(x+y))]

∣∣4 ≤ Ex′,x′′,y′,y′′∈D[e(∆p(x′,x′′,y′,y′′))] ,

where x′,x′′,y′,y′′ are also independent.

Proof. The proof is essentially applying the Cauchy-Schwarz inequality twice. We start by showing∣∣Ex,y∈D[e(p(x+y))]
∣∣2 ≤ Ex,y′,y′′∈D[e(p(x+y′)− p(x+y′′))] ,

and then continue to show∣∣Ex,y∈D[e(p(x+y))]
∣∣4 ≤ Ex′,x′′,y′,y′′∈D[e(p(x′+y′)− p(x′′+y′)− p(x′+y′′)+ p(x′′+y′′))] ,

which is what we want to prove, by the definition of ∆p. We prove the first part by applying the Cauchy-
Schwarz inequality ∣∣Ex,y∈D[e(p(x+y))]

∣∣2 ≤ Ex∈D
∣∣Ey∈D[e(p(x+y))]

∣∣2 =

Ex∈D

[
Ey′∈D[e(p(x+y′))] Ey′′∈D[e(p(x+y′′))]

]
=

Ex,y′,y′′∈D[e(p(x+y′)− p(x+y′′))] .

We prove the second part by applying the Cauchy-Schwarz inequality again∣∣Ex,y∈D[e(p(x+y))]
∣∣4 ≤∣∣Ex,y′,y′′∈D[e(p(x+y′)− p(x+y′′))]

∣∣2 ≤

Ey′,y′′∈D
∣∣Ex∈D[e(p(x+y′)− p(x+y′′))]

∣∣2 =
Ex′,x′′,y′,y′′∈D

[
e(p(x′+y′)− p(x′+y′′)− p(x′′+y′)+ p(x′′+y′′))

]
.

In particular the following corollary follows:

Corollary 4.3. Ex′,x′′,y′,y′′∈D
[
e(∆p(x′,x′′,y′,y′′))

]
≥ 0 .

We analyze the expression Ex′,x′′,y′,y′′∈D
[
e(∆p(x′,x′′,y′,y′′))

]
, in two cases: when D = U is the uni-

form distribution and when D is a PRG for degree-(d− 1) polynomials. We show that in both cases it
is at most ε/2. Combining this with Lemma 4.2 yields the required result. We start our analysis in the
uniform case.

We begin by showing the (well-known) connection between the average value of ∆p and the Fourier
coefficients of p, regarding ∆p as an affinity-test for p. A similar analysis, carried in more depth, can be
found in [3].
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Lemma 4.4.

Ex′,x′′,y′,y′′∈U
[
e(p(x′+y′)− p(x′+y′′)− p(x′′+y′)+ p(x′′+y′′))

]
= ∑

α∈Fn
|p̂α |4 .

Proof. We can write e(p(x)) in the Fourier basis as

e(p(x)) = ∑
α∈Fn

p̂αe(〈α,x〉) .

Notice that
e(−p(x)) = e(p(x)) = ∑

α∈Fn
p̂αe(−〈α,x〉) .

We now expand all four terms of p in

e(p(x′+y′)− p(x′+y′′)− p(x′′+y′)+ p(x′′+y′′)) .

This is equal to

∑
α1,α2,α3,α4∈Fn

p̂α1e(
〈
α1,x′+y′

〉
) p̂α2e(−

〈
α2,x′+y′′

〉
) p̂α3e(−

〈
α3,x′′+y′

〉
) p̂α4e(

〈
α4,x′′+y′′

〉
) .

Remember that we are interested in the expected value over uniform x′,x′′,y′,y′′ ∈ Fn, i. e., in

Ex′,x′′,y′,y′′∈U
[
e(p(x′+y′)− p(x′+y′′)− p(x′′+y′)+ p(x′′+y′′))

]
.

We now use the Fourier expansion and group elements by their related values. After doing so, the
above expectation is equal to

∑
α1,α2,α3,α4∈Fn

p̂α1 p̂α2 p̂α3 p̂α4 Ex′∈U
[
e(

〈
α1−α2,x′

〉
)
]
Ex′′∈U

[
e(

〈
α4−α3,x′′

〉
)
]

Ey′∈U
[
e(

〈
α1−α3,y′

〉
)
]
Ey′′∈U

[
e(

〈
α4−α2,y′′

〉
)
]
.

The term inside the sum for α1, . . . ,α4 is zero unless α1 = α2 = α3 = α4 = α , and in that case its
contribution is |p̂α |4. This finishes the proof of the lemma.

We now use this relation between ∆p and the Fourier coefficients of p to show that the expected
value of ∆p is small.

Lemma 4.5.
∣∣∣Ex′,x′′,y′,y′′∈U

[
e(∆p(x′,x′′,y′,y′′))

]∣∣∣ < ε4/100.

Proof. We use Lemma 4.4. We have

Ex′,x′′,y′,y′′∈U
[
e(p(x′+y′)− p(x′+y′′)− p(x′′+y′)+ p(x′′+y′′))

]
= ∑

α∈Fn
|p̂α |4 .

We now combine the fact that ∑α∈Fn |p̂α |2 = 1 and our assumption that |p̂α |< ε2/10 for all α ∈ Fn, to
yield the required bound.

THEORY OF COMPUTING, Volume 5 (2009), pp. 69–82 77

http://dx.doi.org/10.4086/toc


SHACHAR LOVETT

Combining Lemmas 4.2 and 4.5 we get that∣∣∣Ex,y∈U [e(p(x+y))]
∣∣∣ <

(
ε4

100

)1/4

<
ε

2
.

We now move on to handle the pseudorandom case. We start with the following observation:

Observation 4.6. The polynomial ∆p(x′,x′′,y′,y′′) has total degree-d, but has no degree-d terms which
have variables from only one of x′, x′′, y′, y′′. Therefore, the total degree of variables from x′ in each
term is at most d−1. The same is true for also x′′, y′ and y′′.

We now show that if D is a distribution that is pseudorandom against degree-(d− 1) polynomials,
then it is also pseudorandom against ∆p. We use a hybrid argument similar to the one in [7].

Lemma 4.7. Let D be a distribution that is pseudorandom against degree-(d − 1) polynomials with
error δ . Then∣∣∣Ex′,x′′,y′,y′′∈D

[
e(∆p(x′,x′′,y′,y′′))

]
−Ex′,x′′,y′,y′′∈U

[
e(∆p(x′,x′′,y′,y′′))

]∣∣∣ < 4δ .

Proof. We change the inputs x′,x′′,y′ and y′′ from U to D, one at a time. We prove that the expected
value of e(∆p) changes by at most δ in each step, accumulating to a total of at most 4δ . Formally, let
Hk (k = 0, . . . ,4) be the joint distribution of x′, x′′, y′, y′′, when the first k are taken from D and the last
4− k are taken from U . For example, H1 is the distribution where x′ ∈ D and x′′, y′, y′′ ∈U , where x′,
x′′, y′, y′′ are independent.

We prove that the distance between e(∆p) under Hk−1 and Hk is at most δ , for all k = 1,2,3,4. For
the sake of clarity, we focus on the proof for k = 1. The proof for the other three cases is essentially
identical.

For k = 1, we want to show that∣∣∣Ex′,x′′,y′,y′′∈U
[
e(∆p(x′,x′′,y′,y′′))

]
−Ex′∈D,x′′,y′,y′′∈U

[
e(∆p(x′,x′′,y′,y′′))

]∣∣∣ < δ .

The joint distribution of x′′,y′,y′′ is identical in both terms, so we have∣∣∣Ex′,x′′,y′,y′′∈U
[
e(∆p(x′,x′′,y′,y′′))

]
−Ex′∈D,x′′,y′,y′′∈U

[
e(∆p(x′,x′′,y′,y′′))

]∣∣∣≤
Ex′′,y′,y′′∈U

∣∣∣Ex′∈U
[
e(∆p(x′,x′′,y′,y′′))

]
−Ex′∈D

[
e(∆p(x′,x′′,y′,y′′))

]∣∣∣ .
Now, for any fixing of values for x′′ = a, y′ = b, y′′ = c, ∆p(x′,a,b,c) is a polynomial just in x′.

Observation 4.6 tells us that it is a polynomial of degree at most d−1. Since D is pseudorandom against
degree-(d−1) polynomials, the inequality follows for every fixing of x′′, y′, y′′. Hence, it also follows
for the expected value.

If we take D to be a PRG against degree-(d − 1) polynomials with error ε4/400 and combine this
with Lemmas 4.2 and 4.5, we get that∣∣∣Ex′,x′′,y′,y′′∈D

[
e(∆p(x′,x′′,y′,y′′))

]∣∣∣ <
ε4

100
+4

ε4

400
=

ε4

50
,
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and so using Lemma 4.2 we get that∣∣∣Ex,y∈D[e(p(x+y))]
∣∣∣ <

(
ε4

50

)1/4
<

ε

2
.

This finishes the proof of Lemma 3.2.

5 Case II: Some large Fourier coefficient exists

In this section we prove Lemma 3.3. We assume throughout this section that p has some large Fourier
coefficient. To be precise, there exists some α ∈ Fn such that

|p̂α | ≥
ε2

10
.

Let `(x) be the corresponding linear function, i. e., `(x) = 〈x,α〉. Define

η = p̂α = Ex∈U
[
e(`(x)− p(x))

]
.

η is a measure for the approximation of p(x) by `(x). By our assumption on p̂α , we know that |η | ≥
ε2/10. For any constant a ∈ Fn define the polynomial

qa(x) = p(x)− p(x+a)+ `(x+a) .

Notice that qa(x) has degree at most d−1, because `(x+a) is linear (and so of degree less than d), and
the degree-d terms in p(x) and p(x+a) cancel out.

We can think of qa(x) as using `(x), which approximates p(x) non-uniformly, and the derivative of
p(x) in a random direction a, to build a random degree-(d − 1) polynomial which approximates p(x)
uniformly. In order to show this formally, we define

νx(a) =
1
η

e(qa(x)) ,

and prove that νx(a), taken on a random a ∈ Fn value, is exactly e(p(x)).

Lemma 5.1. For every x ∈ Fn, Ea∈U [νx(a)] = e(p(x)).

Proof. Ea∈U [νx(a)] = 1
η

e(p(x))Ea∈U [e(`(x+a)− p(x+a))] = e(p(x)).

Effectively, we have shown that p(x) can be approximated uniformly by a (random) degree-(d−1)
polynomial qa(x). We can now use this to show that a distribution that is pseudorandom against degree-
(d−1) polynomials is also pseudorandom against p. First, we prove the following lemma:

Lemma 5.2. Let D be a distribution that is pseudorandom against degree-(d − 1) polynomials with
error δ . For every a ∈ Fn ∣∣∣Ex∈D[νx(a)]−Ex∈U [νx(a)]

∣∣∣ <
δ

|η |
.
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Proof. We have

∣∣Ex∈D[νx(a)]−Ex∈U [νx(a)]
∣∣ =

1
|η |

∣∣Ex∈D[e(qa(x))]−Ex∈U [e(qa(x))]
∣∣ <

δ

|η |
,

where we use the fact that qa is a polynomial of degree at most d−1 and so D is pseudorandom against
qa with error δ .

We now conclude by proving Lemma 3.3.

Proof of Lemma 3.3. Let D be a distribution that is pseudorandom against degree-(d− 1) polynomials
with error ε3/10. Then∣∣∣Ex∈D[e(p(x))]−Ex∈U [e(p(x))]

∣∣∣ =
∣∣∣Ex∈D Ea∈U [νx(a)]−Ex∈U Ea∈U [νx(a)]

∣∣∣
≤ Ea∈U

∣∣∣Ex∈D[νx(a)]−Ex∈U [νx(a)]
∣∣∣ <

ε3/10
|η |

≤ ε .
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