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Abstract: A two-serverprivate information retrievalPIR) scheme allows a uséf to
retrieve thei-th bit of ann-bit string x replicated on two servers while each server indi-
vidually learns no information about The main parameter of interest in a PIR scheme is

its communication complexity: the number of bits exchanged by the user and the servers.
Substantial effort has been invested by researchers over the last decade in the search for
efficient PIR schemes. A number of different schemes (Chor et al., 1998, Beimel et al.,
2005, Woodruff and Yekhanin, CCC’05) have been proposed; however, all of them result
in the same communication complexity@fn'/3). The best known lower bound to date is
5logn by Wehner and de Wolf (ICALP’05). The tremendous gap between upper and lower
bounds is the focus of our paper. We showam'/3) lower bound in a restricted model

that nevertheless captures all known upper bound techniques.
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A. RAZBOROV AND S. YEKHANIN

Our lower bound applies to bilinear group-based PIR schemes. A bilinear PIR scheme
is a one-round PIR scheme where the user computes the dot product of the servers’ re-
sponses to obtain the desired value ofitltle bit. Every linear scheme can be turned into
a bilinear one with an asymptotically negligible communication overhead. A group-based
PIR scheme is a PIR scheme in which the servers represent the database by a function on a
certain finite grouf and the user retrieves the value of this function at any group element
using the natural secret sharing scheme base@. ddur proof relies on the representation
theory of finite groups.

1 Introduction

Private information retrieval (PIR) was introduced in a seminal paper by Chor, Goldreich, Kushilevitz,
and Sudanf]. In such a scheme a server holdsrahit string x representing a database, and a user
holds an index € [n]. At the end of the protocol the user should legrand the server should learn
nothing about. A trivial PIR protocol is to send the whole databasi® the user. While this protocol

is perfectly private, its communication complexity is prohibitively large. (Note for comparison that in
the non-private setting there is a protocol with only heg 1 bits of communication.) This raises the
guestion of how much communication is necessary to achieve privacy. It has been shepinahWhen
information-theoretic privacy is required the above trivial solution is in fact optimal. To get around this
Chor et al. suggested replicating the database arkonfy non-communicating servers.

For the case of two servers Chor et &] pbtained a PIR protocol witlD(n'/3) communication
complexity. In spite of the large amount of subsequent research, this bound remains the best known
to date. In contrast to two-server PIR schemes, PIR schemes involving three or more servers have
undergone several steps of improvement. The initial three-server PIR scheme of Chobskhadl [
communication complexit@(n/3). Later Ambainis 1] suggested a scheme wi(n!/>) communica-
tion, and Beimel et al.4] further reduced the communication @n'/>2%). Finally, in a recent paper
Yekhanin P1] achievedO(n'/32582658) communication, and showed that communication can be fur-
ther reduced t@°Y) under a plausible number-theoretic assumption regarding the density of Mersenne
primes (see alsdlp]). The best known (unconditional) upper bound for communication complexity of

k-server PIR whelk is considered as a parameter can be obtained by a combination of resultglffrom |
loglogk
and p1] and isn®( Fogk )

On the lower bounds side the progress has been scarce. We list the known results for the two-server
case. The first nontrivial lower bound of 4Ings due to Mann 14]. Later it was improved to 4tlogn
by Kerenidis and de Wolf][3] using the results of Katz and Trevisalil]. The current record of 5lag
is due to Wehner and de Wolt7]. The proofs of the last two bounds use quantum arguments.

The PIR literature existing today is extensive. There are a number of generalizations of the basic
PIR setup that have been studied. Most notably those are: computational PIR (i.e., PIR based on
computational assumptions), PIR with privacy against coalitions of servers, PIR with fixed answer sizes,
robust PIR, etc. Private information retrieval schemes are also closely related to locally decodable codes
(LDC). For a survey of PIR and LDC literature ség 20].
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In the present paper we study the communication complexity of PIR in the most basic, two-server
case. There are two reasons why this case in especially attractive. Firstly, determining the communi-
cation complexity of optimal two-server PIR schemes is arguably the most challenging problem in the
area of PIR research. There has been no quantitative progress for this case since the problem was posed.
Although to date a number of different two-server PIR schemes are krigsnl[9] all of them have the
same communication complexity 8n!/3). Secondly, the work of4] implies that a large improvement
in the upper bound for two-server PIR would yield better PIR protocols for all other valles of

1.1 Ourresults

Our main result is af2(n'/3) lower bound for a restricted model of two-server PIR. Our restrictions
revolve around a novel, though quite natural, combinatorial view of the problem. We show that two-
server PIR is essentially a problem regarding the minimal size ah@dmced universal grapffior a
family of graphs with a certain propertyThis view allows us to identify two natural models of PIR,
namely,bilinear PIR, andbilinear group-basedPIR. A bilinear PIR scheme is a one-round PIR scheme
where the user computes the dot product of the servers’ responses to obtain the desired valuih of the
bit. A group-basedIR scheme is a PIR scheme that involves the servers representing the database by
a function on a certain finite group, and allows the user to retrieve the value of this function at any
group element using the natural secret sharing scheme bagad on

We establish a2(n/3) lower bound for communication complexity of any bilinear group-based
PIR scheme, that holds regardless of the underlying géapd regardless of the algorithms run by the
servers. The model of bilinear group-based PIR generalizes all PIR protocols known to date, thus our
lower bound demonstrates a common shortcoming of the existing upper bound techniques. It also helps
to explain why the (hitherto somewhat arbitrary looking) numerical vade'/3) in fact represents
guite a natural barrier for techniques of this sort.

It turns out that the communication complexity of bilinear group-based PIR schemes over a group
G can be estimated in terms of the number of low-dimensional principal left ideals in the group algebra
[F4[G]. Our main technical result is an upper bound for this quantity obtained by an argument relying on
the representation theory of finite groups.

1.2 Related work

Apart from the work on general lower bounds for PIR protocols surveyed above, there has been some
effort to establish (stronger) lower bounds for various restricted models of FIR7[ 17]. In par-

ticular, Itoh [L0] obtained polynomial lower bounds on the communication complexity of one-round
PIR schemes under the assumption that each server returns a multilinear or affine function of its input.
Goldreich et al. T] introduced the notion dinear PIR protocols, i. e., protocols where the servers are
restricted to return linear combinations of the database bits to the user, and also the ngiioipeof
complexity i. e., the maximal number of bits the user needs to read from the servers’ answers in order
to computex;. Goldreich et al. obtained polynomial lower bounds for the communication complexity of
two-server linear PIR schemes whose probe complexity is constant. Later, their results were extended

1we actually prefer to use language of matrices rather than graphs, but of course graph formulations are easy to obtain. A
graphG is called induced universal for a graph familyif every graphF € F is an induced subgraph &.
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by Wehner and de Wolfl[7] who showed that the restriction of linearity can in fact be dropped. See
also P].

Itis not easy to match the restricted models surveyed above against one another or against our model,
as the restrictions are quite different. We do not impose any restriction on the functions computed by the
servers as inl[0], and do not restrict the user to read only a small number of bits from servers’ answers as
in [7]. We show that our bilinearity restriction is weaker than the linearity restrictio@]ok[nce every
linear protocol can be easily turned into a bilinear one. However, we insist that the PIR scheme should
employ group-based secret sharing, and that the user should be able to privately reconstruct not only the
database bits but also some extra functions of the database (given by the values at group elements that
do not correspond to database bits).

1.3 Outline

In Section2 we introduce our notation and provide some necessary definitioi&edtion3 we present

our combinatorial interpretation of two-server PIR, and identify the models of bilinear PIR and bilinear
group-based PIRSection4 contains the main technical contribution of the paper. We introduce the
necessary algebraic tools and establisi4n'/3) lower bound for communication complexity of any
bilinear group-based PIR scheme Sactions we discuss possible interpretations of our results and pose

an open problem. In the appendix we review currently known two-server PIR schemes and demonstrate
that all of them are bilinear group-based.

2 Preliminaries

Let[s| OI:e‘({l, ...,s}. We assume thatis a prime power and use the notatiBnto denote a finite field of

g elements. We assume that the database contains entries from the alphaatter than just a binary
alphabet. We also assume some implicit bijection betweleandF,. Throughout log stands for the log
baseg. The notatiorac b stands for concatenation of stringandb.

A two-server PIR scheme involves two serveétsands,, each holding the samebit stringx (the
database), and a usdrwho knowsn and wishes to retrieve some Bt i € [n], without revealing the
value ofi. We restrict our attention to one-round information-theoretic PIR protocols. The following
definition is a non-uniform variant of the definition from] [

Definition 2.1. A two-server PIR protocol is a triplet of non-uniform algorithfis= (Q, A,C). We
assume that each algorithm is giveras advice. At the beginning of the protocol, the udetosses
random coins and obtains a random strimgNext, U invokesQ(i,r) to generate a pair of queries
(que,quey). U sends queto 81 and que to 8,. Each serves; responds with an answer gns
A(],x qug). (We assume without loss of generality that servers are deterministic.) Fitaigmputes
its output by applying the reconstruction algoritittans,ans,i,r). A protocol as above should satisfy
the following requirements:

e Correctness :For anyn, x € [g]", andi € [n], the user outputs the correct valuexpivith proba-
bility 1 (where the probability is over the random strirgs
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e Privacy : Each server individually learns no information abou¥lore precisely, we require that
for anyn and for anyj = 1,2, the distributions quéi,r) are identical for all valuese [n].

Thecommunication complexityf a PIR protocolP is the function oin measuring the total number
of bits communicated between the user and the servers, maximized over all choicesfi, i € [n],
and random inputs.

Definition 2.2. [7] A linear PIR scheme is a PIR scheme where the answer funetignx, que) is
linear inx for arbitrary fixed values of and que. In other words, every bit of an answer is a certain
linear combination of the database bits.

3 A combinatorial view of two-server PIR

Definition 3.1. A generalized Latin square (GLST] for short) is a square matri® of sizeT by T
over an alphabdh] U {«} such that:

e Foreveryi € [n| andj € [T], there exists a uniquec [T] such thaQj =i,
e Foreveryi € [n] andj € [T], there exists a uniquec [T] such thaQy; = 1.

In particular, every row (or column) of a GY$T] contains preciselyT — n) stars. We call the
ration/T thedensityof the generalized Latin square. It is easy to see that generalized Latin squares of
density 1 are simply Latin squares.

LetQbe a GL3n, T], and leto : [n] — [q] be an arbitrary map. B, we denote the matrix of size
T by T over the alphabdy] U {«} that is obtained fron@ by replacing every non-star entryn Q by
o(i). We say that a matrig < [o] T is acompletionof Q, if Gij = (Qo);; wheneverQo);; € [d].

For matrice<C € [g]°*¢ andA € [g]**/ we say tha€ reduceso A if there exist two maps; : [c] — [/]
andm, : [c] — [¢] such that for any,k € [c], Cjk = Ay, (j).x,(k)- NOte that we do notimpose any restrictions
on the mapsr; andmp; in particularc can be larger thah

Definition 3.2. Let Q be a GLSn,T] andA < [g]*. We say thaA covers Q(notationQ — A) if, for
everyo : [n] — [q], there exists a completid® of Q, such that reduces td.

Theorem 3.3. The following two implications are valid:

e A pair Q— A, where Q is a GL®, T] and Ac [g]**/, yields a two-server PIR protocol with
communicatiorlog T fromU to eachS; and communicatiofog/ from the§;’s back toll.

e Atwo-server PIR protocol with queries of lengtimt and answers of length(a), where the user
tosses at most(n) random coins, yields a pair @ A, where Q is a GL$, nd™W+*™] and A is
a g-ary square matrix of size Hg+am.

Proof. We start with the first part. We assume that the matris known to all partiedl(, 81, ands,.
At the preprocessing stage, the servers use the datalsafg" to define the maw : [n] — [q], setting
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c(i)d:efxi. Also, they find an appropriate completi@n and fix mapsr; : [T] — [¢] andny : [T] — [¢],

such that for allj, k: Cjx = Az, (j) z,(x) - Next, the following protocol is executed.

U . Picks alocation,k in Q such that
Qjk = i uniformly at random.

U—381 j

u— 82 ok

U3y : 7'L';|_(j)
U «— 82 . ﬂz(k)
u . OUtpUtSAﬂl(j)ﬂz(k).

It is straightforward to verify that the protocol above is private, since a uniformly random choice of a
locationj, k such thaQjx = i induces uniformly random individual distributions pandk. Correctness
follows from the fact tha€ reduces tdA. Total communication is given by(bgT + log?).

Now we proceed to the second part. Consider a two-server pratoeo(Q, A, C). First we show
that one can modiffP to obtain a new PIR protocdt’ = (Q', A’, €’) such that®’ depends only on ahs
and an§, but not oni or r. The transformation is simple:

e First Q' obtains a random string and invokesQ(i,r) to generateque;,que,). Next Q' tosses
logn extra random coins to represéras a random sum= i1 +i; modn, sets que= queg oi1,
qué, = que, oip, and sends qyeo 1 and qué to S.

e Forj=1,2,A" extracts qugfrom qud, runsA on (j,x,que), and returns ans que.

¢ Finally, ¢’ extracts que que,, ang,ans, andi from ang and an§, and performs a brute force
search over all possible random coin tosse® af find some random inpuit such thaQ(i,r’) =
(que,que). € runsC on (ang,ans,i,r’) and returns the answer (if no suchexists, ¢’ an-
swers arbitrarily). Note that the strimgmay in fact be different from the string however the
correctness property 6f implies that even in this cas¥ outputs the right value.

Now consider the protocaP’. Let Q’j denote the range of queries to ser\jreandA’j denote the
range of answers from servgr The variable queranges oveqj, and the variable afisanges over
Aj. LetR(qug;,i) denote the set of random stringshat lead to the query gli¢o serverj on inputi.
Formally,

R(qué,,i) = {r € [q]"™ | 3 qué,: Q(i,r) = (qué,qué)},
R(qué,i) = {r € [q]*™ | 3 qué : Q(i,r) = (qué,qué)} .

Note that the privacy property of the protoddimeans that the cardinalities (quq ,i) are independent
of i. We denote these cardinalities t(qu). Itis easy to see tha(quq) is always an integer between
1 andg®™. Now we are ready to define the matric@@sndA.

Rows of Q are labelled by pairgque,s;), wheres; € [r(qué))]. Columns ofQ are labelled by
pairs(que,, sz), wheres; € [r(que,)]. We setQque s,),(que,s,) = I if there exists a string € R(que;, i) N
R(qué,,i) such that is the string numbes; in R(qué;,i) and the string numbes, in R(qué,, i) with
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respect to lexicographic ordering of these sets; otherwise WQ§gt ) (que,s,) = *- The definition
of the protocol?’ easily implies that for every paiqué,qué,) there can be at most onesuch that
R(qué,,i) NR(qué,,i) # 0, thereforeQ is correctly defined.

Consider now an arbitrary paii, (qu€,s;)), wheres; € [r(qu€)]. Letr be the random string
numbers; in lexicographic ordering oR(que,i). Let Q'(i,r) = (qué;,qué,), and lets, be the number
of r in lexicographic ordering oR(qué,,i). The column ofQ labelled(qué,,s,) is the unique column
such thaQ(que s,),(que,s,) = I- Thus we proved that every row &f contains exactly one entry labelled
i. A similar argument proves this claim for columns. TIQig& a generalized Latin square.

Now we proceed to the matrik. Rows ofA are labelled by possible values of ansimilarly
columns ofA are labelled by possible values of gan¥Ve setAzng ang = €'(ang,ansg). The matrixA
defined above may not be square, however one can always pad it to a square shape.

It remains to show tha®@ — A. Given a mapo : [n] — [g] we consider the database where
xi = o(i). We use the protocdl’ to define mapsr; from the row set ofQ to the row set oA, andn,
from the column set of) to the column set oA. We setr; (qug,, s1) = A'(1,x,qué) ) andm(qué,, sp) =
A'(2,x,qué,). The correctness property &f implies that the maps, 7, reduce a certain completion
of Qs tO A O

The theorem above represents our combinatorial view of two-server PIR protocols. A PIR protocol
is just a paiQ — A, whereQ is a generalized Latin square aAds ag-ary matrix. Every PIR protocol
can be converted into this form, and in case the number of user’s coin tosses is linear in the query length
such conversion does not affect the asymptotic communication complexity.

3.1 Bilinear PIR

The combinatorial interpretation of PIR suggested above views PIR as a problem of reducing certain
special families of matrices to some fixed matrix. A nice example of a nontrivial matrix where one can
say a lot about matrices that reduce to it is a Hadamard matrix.

Definition 3.4. A Hadamard matrixH, is ag™ by g™ matrix where rows and columns are labelled
by elements offg' and matrix cells contain the dot products of corresponding labels.(M@)v, v, =
(V1,V2).

Lemma 3.5. Let M be a square matrix with entries frafa; then M reduces to a Hadamard matrixH
if and only if the rank of M is at most m.

Proof. Clearly, the rank oHp, is m; therefore the rank of any matrix that reducesitpis at most that
large. To prove the converse, observe Matan be written as a sum of matricesM = M+ ...+ M™,
where eachM! is of rank at most one. Ldtbe the dimension ok. For everyi € [m] set thei-th
coordinate ofm long vectorsvt,... V* ul,... u' so thatv/uk = M}k. Now the mapsr; : [t] — [qM],
o - [t] — [qM) defined bym (j) =V, m2(K) = uk embedM into Hp,. O

The above lemma is important since it allows us to reduce the prooftkatHy, for some gen-
eralized Latin squar® to showing that for every : [n| — g, Qs can be completed to a low rank
matrix.
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Definition 3.6. We say that a two-server PIR sche@e— Ais bilinear if A= H, for some value ofm.

Another way to formulate the above definition is to say that a PIR scheme is bilifi¢aoifnputes
the dot product of the servers’ answers to obtain the valde @he next lemma shows that the restriction
of bilinearity is weaker than that of linearity.

Lemma 3.7. Every linear PIR protocol can be turned into a bilinear PIR protocol with the same asymp-
totic communication complexity.

Proof. Inalinear PIR protocol the user receives two stringg arss of linear combinations of database
bits from the servers. The-dimensional unit vector corresponding to tith bit of the database is
guaranteed to be in the joint span of the combinations fromamd ans. The final output oll is a sum
of two dot productgcy,ang ) + (¢, ang) = X;, for some vectors; andc, that are computed by the user
along with queriegque ,quse,). The idea behind turning a linear protocol into a bilinear one is simple.
After generatingque, que,) along withc; andc,, U represents; andc, as sums of random strings
C1 = C11+ C12, C2 = C21+ Cpp, and sends qye €110 Cy1 to 81 and qugo Cipo Cpp to Sy. Each server
responds with a string of 2 |ang | + |ang| bits. 81 sends back 4 (c11,ang) ocz10ang. 82 sends back
(c22,ang)oloangocyy. Itis easy to see that the dot product of the servers’ answers yelaisd that
the procedure above increases the overall communication only by a constant factor. O

3.2 Group-based PIR

Finite groups are a natural source of generalized Latin squaress £efgs,...,gr} be a finite group
of sizeT. LetS= {s,...,} C G be an ordered subset 6f of sizen. A generalized Latin square
Qg,sisaT by T square matrix whose rows and columns are labelled by eleme@®sanfdQg, ¢, = i if
glggl =5, while all other locations contain stars.

When a PIR protoco — A uses a generalized Latin squ&g s we say that iemploys a group-
based secret sharing schentessentially, this means that given an inded maps it to a group element
S, represents; as a random product in the grogp= glggl, and sendgj 1o §;.

The notion of egroup-basedIR protocol (for which we later prove a lower bound) is more restric-
tive. LetM ¢ [g]"*T andG be finite group. Assume that the rows and column#lodre labelled by
01,...,0r. We say thatVl respects Gf, for every gi,g»,03,04 € G such thaiglgz‘1 = ggggl, we have

Mgl-,gz - M93,94'

Definition 3.8. We say that a PIR protoc@ — A is group-basedf it employs a secret sharing scheme
based on some group and, for everyo : [n]| — [y, there exists a completidd such thaC reduces to
A andC respectss.

Stated in other words, a PIR scheme is group-based if the servers represent the database by a function
on a certain finite grougs and the scheme allows the user to retrieve the value of this function at any
group element using the natural secret sharing basé&l on
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4 Communication complexity of bilinear group-based PIR

Consider a bilinear group-based PIR sch&e: H, based on a grou@, with answer length. Clearly,
the query length is lof5|. LetN(q,G,r) denote the number ¢6| by |G| matrices oveify that respect
G (for some fixed labellind gi, . ..,gr} or rows and columns) and have rank at modt is easy to see
that
q"<N(a,G,r), (4.1)
since byLemma3.5 every database yields such a matrix and distinct databases yield distinct matrices.
In Sectiond4.2we obtain an equivalent algebraic definition kg, G,r), and inSection4.3we prove an
upper bound foN(q, G, r). Our final result is a constraint on the range of possible valugs|&f, andr.
This constraint implies aﬁ(n1/3) lower bound for the total communication of any bilinear group-based
PIR scheme.

4.1 Algebraic preliminaries

Our proof relies on some basic notions of the representation theory of finite groups. The standard
references for this subject areg], [8]. For a general algebra background s&].[

LetG = {g1,...,07} be afinite (not necessarily abelian) group. Hemeral linear group GKF)
is the multiplicative group of all non-singularty r matrices oveffy.

o An Fgy-representatiorof G of degree is an homomorphisnp : G — GL; (Fq).

e The group algebralFy[G] of G over a fieldFy is the algebra ovelfy consisting of all possible

T
formal linear combinations o;g;, o5 € Fg. The algebraic operations ify[G] are defined by:

> g+ Bigi= (oi+piai;

(Z “i9i> (Zﬁigi> = (aB;)(aig;);

|7J

A (Zaigi> = Z()Loq)gi, A eFg.

o A left (right) ideal in the group algebrdy[G] is anFq-linear subspace dfy(G]| that is closed
under left (right) multiplications by elements B§[G].

o A leftFq[G]-moduleis anFq-linear space on whichq[G]| acts by left multiplication in such a way
that for anymy, mp € M and anye, B € Fg[GJ:

a(m +nmp) = am + amy;
(a+B)my = oy + By ;
(af)m = o(fmy).
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The dimensionof a module is its dimension as &fy-linear space. LeM be anr-dimensional
F4[G]-module, and letn = {my,...,m:} be a basis oM. Multiplication by an elemeng € G
induces a coordinate change in the basisSuch a change can be expressed by agr ma-

trix ¢mm(9). The mapdum : G — GL(Fq) is anFq-representation oG of degreer. Two
F4[G]-modulesM,M’ are calledisomorphicif there exists an isomorphism between them as
linear spaces that preserves multiplication by the elemeni&;[@]. In the matrix form this
means that for an arbitrary choice of basesn’ in M,M’ there existd) € GL,(IFq) such that
dmm(9) =U 1o m(9)U (g€ G). In particular, non-isomorphic modules correspond to different
representations (again, for any choice of bases) andlieusumber of pairwise non-isomorphic

left modules of dimensionr does not exceed the number of different?y-representations

¢ : G — GL,(Fq) of degreer.

Clearly, every left ideal oF 4[G] is a leftF4[G]-module.

4.2 Algebraic formulation

Let A=TFq4[G]. Fora € A, let Ao denote theprincipal left idealgenerated by, that is, the sefBo |
B € A}. Let rk (a) = dim(Aa), where dim(Ac) is the dimension ofa as a linear space ové,.
Consider theegular representatio of G, ¢ : G — GLg|(Fy), defined by

1, ot =0,
- 4.2
(0(9))g1.0. {O, otherwise. (4.2)

Extend¢ to A by linearity. Note that is an injective algebra homomorphism and that the imageisf
theFy-algebraR of all matrices that respe@. Observe that for anyl € R,

rk M = dim {M'M | M’ € R} (4.3)

To verify formula @.3) one needs to notice that the first row of a maiike R can be arbitrary. There-
fore productdM’M contain all possible linear combinations of rows\bfas their first row. Also notice
that matrices irR are uniquely determined by their first row. Formua3j follows. Since¢ is injec-
tive, it implies that rk¢ (o)) = rk(a) (o € A), and we arrive at the following alternate definition of
N(q,G,r):

N(g,G,r) =#oa e Alrk(a) <r}. (4.4)

4.3 Low-dimensional principal ideals in group algebras

LetV be anfFy-linear subspace ok = F4[G]. Theleft annihilatorof V is defined by Anp(V) d:ef{B €

A| BV = 0}. Similarly, theright annihilator is Anng(V) d:Ef{ﬁ € A|VB =0}. Clearly, Ann (V) is a

left ideal inA and Anrg(V) is a right ideal inA. Let M be a leftA-module. Thekernelof M is defined

by Ker(M)d:ef{[B € A| BM = 0}. Itis straightforward to verify that KefM) is a two-sided ideal that

coincides with Anp(M) if M is a left ideal inA.

Lemma4.1. The number of r-dimensional left A-modules counted up to isomorphism is atrrzr‘l‘ES’si‘ﬁ.
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Proof. As we remarked irSection4.1, an upper bound on the number I&§-representations d& of
degree yields an upper bound on the number of non-isomorptdanensionalA-modules.

To bound the number of representationsglet. ., gs be a set of generators f&; wheres<log, |G|,
and note that every representatipnG — GL, (Fq) is uniquely specified bg matricesp(g1), ..., ¢(0s)
each of size byr. O

Clearly, isomorphic modules have identical kernels. Now we show that the kernel of a low-dimensional
module has high dimension.

Lemma 4.2. Let M be an r-dimensional left A-module; then the dimensiokesf(M) as anFq-linear
space is at leagG| —r2.

Proof. Fix arbitrarily a basisn= {my,...,m} in M, consider the representatigg n from Section4.1
and extend it by linearity to an algebra homomorphigim : A — GL;(Fq) as inSection4.2 Then
Ker (M) is just the kernel ofym m, and the statement follows from basic linear algebra: for any linear
mapping¢ : V — W we have dintKer(¢)) > dim(V) —dim(W). O

Lemma 4.3. Suppose V is alig-linear subspace of A; thetim(Anng(V)) < |G| —dim(V).

Proof. Consider a bilinear map: A® A — Fq, setting/(x®Yy) equal to the coefficient of 1 in the
expansion oky in the group basis. Recall from basic linear algebra that given any bilinear’fmap
U ®V — Fq we can define itsank rk(¢) by choosing basefuy, ...,un} inU and{vy,...,vs} inV, and
letting rk(¢) be the rank of then by n matrix with the entrieg(u; ® vj). rk(¢) does not depend on the
choice of the bases. As a consequence, for every subspaceb), V' CV’ such that(U’' V') =0
we have the inequality dift)’) +dim(V’) < m+n—rk(¢) (if an m by n matrix of rankr contains amm’
by n’ zero submatrix, them? +n' < m+n-—r).

In our situation, rk¢) = |G| (since in the group basiss represented by a permutation matrix). Also,
(V@ Anng(V)) = 0. Therefore difAnng(V)) < |G| —dim(V) by the above. O

Our main technical result is given by
Theorem 4.4. For an arbitrary finite group G and arbitrary values of gand r
N(q,G,r) < gOr1eale).

Proof. Let a € A be such that rka) < r. ConsiderAa as a leftA-module. Ker(Aa) is the two-sided
ideall = Ann_(Ax). Note thatee € Anng(l). By Lemma4.1, everyA-module of dimension up to
has its kernel coming from a family of at mag}_, ¢*'°%/Gl < rq"*0%(Gl ideals. Also by Lemmas.2
and4.3there are at mosf” elements in Ang(l) for everyl. O

Combining Equation4.1) with Theorem4.4we obtain our main result.

Theorem 4.5. Let Q— H, be a bilinear group-based PIR scheme over a group G. kelttg |G| denote
the query length and r denote the answer length; then

n<O(tr?).

In particular the total communication of any such schem@(s'/3).
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5 Conclusion

We introduced a novel and quite natural combinatorial view of the two-server PIR problem, and obtained
a lower bound for the communication complexity of PIR in the corresponding model. Stated informally,
our main result is that as long as the servers represent the database by a function on a finite group, the
protocol allows the user to retrieve the value of this function at any group element, and the user computes
the dot product of the servers’ responses to obtain the final answer, the communication complexity has
to be Q(n!/3). Clearly, our result admits two interpretations. On the one hand it can be viewed as a
witness in support of the conjecture of Chor et al. frdhdaying that their PIR protocol witﬁ)(nl/3)
communication is asymptotically optimal. On the other hand, our result exhibits a common shortcoming
of the existing upper bound techniques and thus hopefully may provide some directions for future work
on upper bounds. We would like to stress the first interpretation of our result by revisiting and discussing
all restrictions that we introduced in order to prove the lower bound:

1. We restricted ourselves to bilinear protocols, i. e., protocols wheremputes the dot product of
the servers’ responses. Bilinearity is a weaker assumption than linearity, therefore if one believes
that linear PIRs come close to optimal, then so do bilinear ones.

2. We restrictedl to toss a linear number of coins in the length of his queries. Although this restric-
tion seems a technicality, so far we have not been able to remove it. The only justification that
we have is that it would seem quite surprising if indeed optimal PIR schemes require a very large
amount of randomness. If one accepts restrictions 1-2, then a PIR protocol is justa-pdi;
such that for every : [n] — g, Qs can be completed to a matrix of rank at most

3. We further restrict the generalized Latin squ@¢o be of the form GL§ s for certain subse$
of a finite groupG. Generalized Latin squares of this form constitute a rich and natural class. In
other words, this restriction states tfiiemploys a group-based secret sharing scheme to share
the indexi between the servers.

4. Our last restriction is a restriction on the structure of low rank completions of mat@igesVe
require that for every there exists a completidd of Qs to a matrix of rank at mostsubject to
the extra constraint th& respectss. Our only evidence for this restriction is that so far we are
unaware of examples of matric€: (with parameters suitable for nontrivial PIR) whose minimal
rank with respect to locations labelled by stars would be substantially smaller than the minimal
rank subject to an extra constraint of respectig

We proved that the communication complexity of any PIR scheme that satisfies restrictions 1-4
is Q(n/3). We leave it up to the reader to decide whether to accept each of the restrictions 1-4 as
reasonable. We hope that ideas and techniques that we introduced may lead to further progress towards
understanding the true communication complexity of private information retrieval. In particular the
following problem is intriguing:

Open problem: Let Q be a GL$n, n%] of inverse polynomial density. Show that there exists a map
o : [n] — Fq such that the minimaFy-rank of Q, (with respect to locations containing starsQg) is
o(logn).
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Comment: If true this implies anw(logn) lower bound for every bilinear PIR scheme, whéfe
tosses a linear number of coins in the length of his queries. If false, this yields a PIR protocol with
clogn communication. It may also be interesting to see if there is any formal connection between this
problem and the well-knowmatrix rigidity problem over finite fields.

6 Appendix: Current PIR schemes are bilinear group-based

A number of two-server PIR schemes are known to daté,[3, 9, 4, 19]. The goal of this section is to

show that all of them can be easily transformed into bilinear group-based schemes. We restrict ourselves
to schemes fromd, 3, 19] since every other scheme is a variant of one of them. We do not follow the
chronological order in which the schemes were proposed.

All known two-server PIR schemes rely on the idea of polynomial interpolation. Specifically, the
retrieval ofx;, where the servers hold databasand the user holds indexis reduced to an evaluation
of a cubic polynomiaF (zi,...,zm) € Fq[z1,...,zn|, held by the servers, on a poilati), that the user
determines based oanWe refer toE (i) as the encoding af

We use the encoding functidh: [n] — Fg' that has been previously used & B]. Without loss of

generality assume that = n/3 is an integer. Consider an arbitrary bijectipn[n] — [m'] x [m(] x [n].
Letg € {0, 1}™ denote a vector whose unique nonzero coordinate$etm = 3nv. Put

E(i) =€), €y, © €y

3°

Note that for every, E(i) has three nonzero coordinates. Define

n
F(Z,,Zrn): X va
' iZ\ E(il;lzl

(E(i), is the/-th coordinate oE(i)). Since eaclk(i) is of weight three, the degree Bfis three. Each
assignmenk(i) to the variableg; satisfies exactly one monomial i (whose coefficient is;); thus,
F(E()) = x.

6.1 The monomial distribution scheme of 8]

For simplicity we restrict ourselves to the case when the underlying fi#lg i&iven a cubic multivariate
polynomialF(z,...,zn) € Fa[z,...,zy], the servers compute a new polynomial im 2ariables

F(Viy.e oy Vim,Wa, ..., Wim) = F (VL +Wi, ..., Vin+ W)
The servers rewrité as a sum of two polynomials

F Vi, Vi, Wi, ..o, Win) = Ry(Ve, - ., Vins Wi, -« -, Win) 4+ Fu(Va, - -, Viny Wi, - .., W),

whereF, is the sum of all monomials fror that contain at least two variableg andF, is the sum of
all monomials fronF that contain at least two variablag. Note that every monomial ¢f goes either
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to K, or to K. Servers further rewritg, andF, to obtain
FAV(Vl) ceoy VmyWe, ... an) Vl) Y/ + /Z Cf Vi,...,V Wf? (61)
IfW(VL ceesVim, Wy, ... an) F W17 W +; CZ Wy,...,W (62)

The formal description of the scheme is below. Recall that the user Fof§%' and wishes to
retrieveF (P).

u : Represent® as a random su@ =V +W for V,W < FJ.
U—81  (Vi,--.,Vm)
U—82 @ (Wi,...,Wm)

U8 : F(V),c1(V),...,cm(V)
U—82 : F(W),ci(W),...,cm(W)
u : OutputskF (V) +F(W) + (V, (c1(W),....cm(W))) + (W, (c1(V),...,cm(V))))

Note that the protocol above is group-based, since the user can rdtieydor any P € F7', and
the user’s secret sharing scheme is baseBjnUnfortunately, in the current form, the protocol is not
bilinear. It is not hard to modify the protocol to achieve bilinearity.

Bilinear group-based form:

U : Represent® as a random sui@ =V +W for V,W < FJ..
U—381 : (V1,..-,Vm)
U—8 : (Wi,...,Wn)

U—81 : F(V)olocy(V)o...ocm(V)ovio...ovy
U—82 : loF(W)owjo...oWnocCi(W)o...ocm(W)
U : Outputs the dot product of the servers’ replies

6.2 The combinatorial scheme of5]

Unlike the PIR schemes 0B8] 19], the scheme off] does not explicitly mention low degree multivariate
polynomials (or any other functions on groups), therefore it is not immediately clear how to make it
bilinear group-based. However it was observed3rtiat in fact this scheme can also be cast in terms
of polynomial evaluation. We now sketch the description of the scheme and show that it is essentially
identical to the scheme o8], and therefore can be turned into a bilinear group-based form.
Recall thatn? = n/3 is an integer and : [n] — ] x [m] x [m] is a bijection. ForSC [n] and
j € [m] let
, S\{j}, ifje
Soj— { \{i}, ifjes

Su{j}, otherwise.

ForS,$,Ss C (] let
T(S,9,%) = > X .

{ilviel3): v(i)jeS}
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We say that a triple of sef§},S,, S; C 1] is at distance onérom a tripleS;, S, S; if there exist unique
j € [3] andk € [m] such that§ = § for t # j andS; = S @ k. Let B(S;, $,S;) denote the 87 long
vector of values off (S|, S,,S;) at triplesS|, S,, S; that are at distance one frof, S, S;. Below is the
formal description of the messages exchanged by the user and the servers:

U : PicksS;,$,S; C [m] at random.

U—81 : S.9%

U—82 @ S®Y(i)1,SDy(i)2,S3®¥(i)3

U—=81 : T(S1,9,%),B(S51,$,S%)

U8, @ T(S8Y(1)1,S®Y()2,S®1(i)3),B(SBY()1, S ® ¥(i)2, S5 ¥(i)3)

Now note thall (S1,$,S3) =F(S10$0S3). LetP =E(i) € F5. Recall thak, € {0,1}™ denotes a
vector whose unique nonzero coordinaté.i8Ve rewrite the protocol above in a different notation:

U : Represent® as a random sui@ =V +W for V,W < FJ.
U—81 : (V1,...,Vm)
U—82 1 (Wi,...,Wn)

U—81 : F(V),F(V+e),....F(V+en)
U—S8y : FW),F(W+er),...,F(\W+en)

Let ¢, denote the polynomial that has been previously used in forndula (it is not hard to verify
that

a(V)=F(V +a)+F(V). (6.3)
Taking formula 6.3) into account we conclude that the combinatorial scheme above is essentially iden-

tical to the scheme from the previous subsection. Thus it can also be turned into a bilinear group-based
form.

6.3 The partial derivatives scheme 0f19]

An important difference of this scheme is that it requires the field size to be larger than 2. Fix two
distinct nonzero elemenfs, 1> € Fy. Let f(4) € Fg[A] be a univariate cubic polynomial. Note that

f (O) =c;f ().1) + sz/(ﬁ.l) + c3f (),2) + C4f/(),2) ,
for some constantsg that are independent dt

Protocol description : We use standard mathematical notati%‘w to denote the value of the
partial derivative oF with respect tay at the poinW. LetP = E(i). The user wishes to retrievgP).

U : PicksV € Fg' uniformly at random.
U—8 : P+ )u]_V
U—8 : P+ALV

. IF oF
U+ 81 : F(P—i_llv)’TZlerllV"”?E)PJrMV
i oF oF
u<—82 . F(P—i_lzv)’TZlp+lzv’.“7a’l3+lzv
2 m
u ; C1F(P+11V)+02[§1§7Fé P+/11VVE+C3F(P+/12V)+C4g§137':f Py "
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Note that in the protocol above the servers represent the database by a fEncﬂi‘@p Fqona
group and the user can retriel¢P) for arbitrary elemenP € F. However, the protocol is not bilinear
group-based, since the user does not secret share according to the group law (i. e., the difference of
shares is different fror®), and the user does not output the dot product of the servers’ responses. It is
not hard to modify the protocol to achieve the desired properties.

Bilinear group-based form:

u : PicksV € Fg' uniformly at random.
U—>81 . (P-'—)LJ_V)AZ/(AZ—A«]_)
U— 8 : (P—i—)sz)kl/(lz—)Ll)
. il OF OF
U—81 F(P—&—llV)ngo[ 7Lz Z azf‘P+7LV( —l—llV)} 5 P+7LV 05 P+7leo
olo (P—i—)LlV) 7C4 (P—&-le)
U8 1 croF(P+22V)olo - (P—i—)le) fiz(P—Fle)mo
il OF

{12 M Z 9Z"P+A (PJF}LZV)] & Py 9 |piy

u . Outputs the dot product of the servers’ replies
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