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1 Introduction

Propositional proof complexity is currently a very active area of research. In the realm of the theory of
feasible proofs it plays a role analogous to the role played by Boolean circuit complexity in the theory
of computational complexity.
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The motivation to study the complexity of propositional proof systems comes from two sides. First,
it was shown in the seminal paper of Cook and Reckhtdy that the existence of “strong” systems in
which all tautologies have proofs of polynomial size is tightly connected to the NP vs. coNP problem.
This direction explains the considerable efforts spent in proving super-polynomial lower bounds for
proof systems that are as strong as possible.

The second motivation concerns automated theorem proving. The main goal is to investigate the
efficiency of heuristics for testing satisfiability, and to give some theoretical justification for them. It
turns out that the more sophisticated our propositional proof system is the harder it is to find proofs
of near-optimal size. The most thoroughly studied and oldest class of algorithms for satisfiability is
based on simple proof systems such as resolution, or even on restricted subsystems of resolution. This
partially explains why it is of interest to study such simple and weak proof systems and investigate how
they relate to each other.

A lot of recent research has concentrated on the separation between different variants of resolution.
In a series of paperslB, 14, 6, 4] the following relationships were studied: tree-like resolution vs.
resolution, Davis-Putnam resolution vs. general resolution, regular resolution vs. general resolution. For
all pairs except the latter, exponential gaps have been produced.

The regularity restriction was first introduced by Grigory Tseitin in a ground-breaking arigle [
the published version of a talk given in 1966 at a Leningrad seminar. This restriction is very natural,
in the sense that algorithms such as that of Davis, Logemann and Lovédl#in@ften described as
the “Davis-Putnam procedure” and the prototype of almost all satisfiability algorithms used in practice
today) can be understood as a search for a regular refutation of a set of clauses. If refutations are
represented as trees, rather than directed acyclic graphs, then minimal-size refutations are regular, as
can be proved by a simple pruning argumezi, [p. 436].

The main result of Tseitin’s pape2d is an exponential lower bound for regular resolution refuta-
tions of contradictory CNF formulas based on graphs. Tseitin makes the following remarks about the
heuristic interpretation of the regularity restriction:

The regularity condition can be interpreted as a requirement for not proving intermediate
results in a form stronger than that in which they are later uselgiidB are disjunctions

such thatA C B, thenA may be considered to be the stronger assertion of the two); if the
derivation of a disjunction containing a variaflénvolves the annihilation of the latter, then

we can avoid this annihilation, some of the disjunctions in the derivation being replaced by
“weaker” disjunctions containing.

These heuristic remarks of Tseitin suggest that there is always a regular resolution refutation of min-
imal size, as in the case of tree resolution. Consequently, some authors tried to extend Tseitin’s results
to general resolution by showing that regular resolution can simulate general resolution efficiently. The
results of Goerdt]4] and the present paper show that these attempts were doomed to failure. However,
it remains an open question whether this simulation might not hold for some special cases. In the con-
clusion of the paper, we make a conjecture to the effect that for the formulas of Tseitin, as well as other
well-known families of examples, there is always a minimal-size regular refutation.

The first example of a contradictory CNF formula whose shortest resolution refutation is irregular
was given by Wengi Huang and Xiangdong Yi6]. Andreas Goerdtl4] gave the first super-polynomial
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separation between regular resolution and unrestricted resolution by constructing a family of formulas
that have polynomial-size resolution proofs, but require quasipolynomial-size regular resolution refuta-
tions.

In this paper, we present two new families of formulas, and prove that they have simple polynomial-
size resolution refutations, but require exponential-size regular resolution refutations. Our first example
is technically simpler, and results in a stronger lower bound. The second example has a natural combina-
torial interpretation, and the corresponding lower bound technique may be useful for other applications.

The paper is organized in the following waysection2 contains definitions necessary for both
examples. We give these examples independently in Se@jahands.

2 Preliminaries

A literal is a propositional variabl& or its negation—-x. A clauseis a set of literals. Theesolution
principle says that ifC andD are clauses and is a variable, then any assignment that satisfies both
of the clause€ v x andD V —x also satisfie€ v D. The claus&C Vv D is said to be aesolventof the
clausesC v x andD v —x derived byresolving onthe variablex. A resolution derivatiorof a clauseC
from a CNF formulaF consists of a sequence of clauses in which each clause is either a cldtse of
or a resolvent of two previous clauses, & the last clause in the sequence; it igrfutationof F if

C is the empty claus@. Thesizeof a refutation is the number of resolvents in it. We can represent it
as a directed acyclic graph (dag) where the nodes are the clauses in the refutation, each Eldnase of
out-degree 0, and any other clause has two arcs pointing to the two clauses that produced it. The arcs
pointing toC Vv x andD Vv —x are labeled with the literals and —x respectively. It is well known that
resolution is asoundandcompletepropositional proof system, i. e., a formWtais unsatisfiable if and
only if there is a resolution refutation fér.

A resolution refutation isegularif on any path from\ to a clause ir (in the directed acyclic graph
associated with the refutation), each variable is resolved on at most once along the path.

An assignmentor a formulaF (sometimes we call it also eestriction) is a Boolean assignment
to some of the variables in the formula; the assignmetta if all the variables in the formula are
assigned values. [T is a clause, and an assignment, then we wri@ ¢ for the result of applying
the assignment t@, that is,C[c = 1 if o(l) = 1 for some literal in C, otherwiseC| o is the result of
removing all literals set to 0 by from C (with the convention that the empty clause is identified with
the Boolean value 0). IF is a CNF formula, therr [o is the conjunction of all the claus€ o, C a
clause inF.

If R=Cy,...,Cx is a resolution derivation from a formuk, andc an assignment to the variables
in F, then we writeR| o for the sequenc€;|o,...,C[o.

Lemma 2.1. If R is a regular resolution derivation of C from a formula F, aodan assignment, then
there is a subsequence of&Rthat is a regular resolution derivation of a subclause ¢bCfrom F[o.

Proof. This is a straightforward induction on the length of the derivation fflom O

Every regular resolution refutation can be represented by a read-once branching prograf [
though we prefer to speak in terms of refutations rather than branching programs, we nevertheless need
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some ideas from the latter framework. A path in a resolution refutation can be considered as determined
by the answers to a series of queries. That is to say, starting at the root of the refutation, let us follow
a path in the proof according to the following recipe. If a noda the refutation is labeled with a
clauseC Vv D derived from clause€ v x andD V —x, then we say that the variabkes queriedat v. If
we extend the path to the node labeled v@tk x, then we say that we have answered the query with
“x,” while in the other case, we have answered witkx." Thus every patir in the refutation from the
root to a node in the proof corresponds to a set of literals constituting the set of answers to the queries
in the path; conversely the set of literals constituting the answers uniquely determines the path. The
assignment defined by setting all of the literals in this set to O falsifies all the clauses labeling nodes in
the path.

For any node in a regular refutation we can define an important $etgufttenvariables:

Definition 2.2. For every noder in a regular refutation labeled with a clauSewe say that a variable
is forgotten atv if it does not occur irC, but is queried on some path from the rootto

The intuition behind this definition is given by the following lemma.

Lemma 2.3. If the variable x is forgotten at a nodein a regular refutation, then no axiom reachable
from v can contain x. In particular, the clause labelingmust be inferred from initial clauses that do
not contain Xx.

Proof. If xis forgotten atv, but there is an axiom reachable frontontainingx, thenx must have been
removed by resolution by some inference on the path froto this axiom. However, this contradicts
the regularity restriction. O

Clearly this result only applies to the case of a regular refutation. This corollary will be a central
point in our lower bounds for regular resolution. Our strategy will be to find a nodéh a forgotten
variablex and show that all initial clauses free »fdo not imply the claus€, even semantically; to
show this we produce an assignmenthat falsifies only clauses containimgwhile C,[c = 0.

3 Firstexample: GT, , formulas

Our first example is based on the ordering principle first considered by Krishnamughy [

Definition 3.1. Let X be the set of variables; for i, j € [n], i # j. The contradictiorGT, consists of
the following axioms:

Xij < =i 1<i<j<n,

—Xigiy V T Xigig V TXigiy for any distinctiy, iz,iz € [n] ,
\/ Xk jen .

ken], k#j

Our version of the contradictioBT, differs slightly from the one considered in the literature, since
the transitivity axioms are usually written in the fos, A Xi,i; — Xi,i, (that is to say(—Xi,i, V = Xi,i; V
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Xijis)). 1t IS more convenient for us to write these axioms in the symmetric foxm, vV —Xi,i; V =i, ;
these representations are equivalent in the presence of the agjems-x;;. Note that there are exactly
two such transitivity axioms for any set of three distinct elements, i3 € [n].

This contradictory principle can have several semantical interpretations; our proof will essentially
depend upon the following one. Consider the variagjles a predicate’~ j. The first two groups of
axioms assure that is a total linear ordering on the sgif. The principleGT, claims that any such
ordering never has a maximum. Krishnamurth$g][conjectured thatGT, requires superpolynomial-
size resolution refutations. This conjecture was refuted by Gunaén&tck, who proved the following
result.

Theorem 3.2. There exist regular resolution refutations of Gaf size @n?).

Proof. The paper of $timarck 2] exhibits an explicit refutation o& T, of this size. Since the number
of clauses irGT, is alsoO(n?), the size of the refutation is linear in the number of clauses. It is easy to
check that $tlmarck’s refutation is in fact regular. O

This contradiction was later used by Bonet and Galglsid show the optimality of the size-width
relationship. By a slight modification of &marck’s construction, they showed that the refutation in the
preceding theorem can be taken as an ordered resolution refutation (or “Davis-Putnam” refutation).

We modify GT, to make it harder for regular resolution, but preserve its unrestricted resolution
complexity. For that we replace some axio@with a pairCV xc, CV —xc. The variablex: should be
chosen in a certain precise way to simplify our lower bound.

Definition 3.3. Let X be the set of variables; i, j € [n], i # |; the cardinality ofX isn(n—1). LetT
be the set of all triplesi, j,k), i # j #K, i, ],k € [n]. The cardinality ofT is clearly (g) Let us fix a
functionp from T to X.

The set of clauseST, , consists of the following axioms:

Xij < —Xji 1<i<j<n,
AV jeln ,
ke[n], k#j
Xigip V T Xigig V T Xigig V p(i]_, iz, i3) for (—|Xi1i2 V =Xy, V _'Xi3i1) e GT, ,
“Xigip V Xigig V Xigiy V P (i1,12,13) for (—=Xiyi, V —Xisis V Xz, ) € GTy .

For each transitivity axiom in the original $8fl,, involving verticed,i», i3, the set of cIause@Tr(,p
contains exactly two axioms produced by adding a new litefal,i», i) or its negation-p (i1, i, i3).
In the definition above, the condition “fdrx;,i, V —Xi,i; V —Xi,i;) € GTy” must be understood relative
to a choice of ordering of the literals in the clause in question. That is to say, in defining the new
set of clauses, we need to make an arbitrary choice of the three possible representations of the clause
{—Xizip, —Xisig, Xisi, } @S an ordered disjunction.

Corollary 3.4. For anyp, there is a refutation of G, in general resolution of size @>).
Proof. Itis easy to see that the princip&T, can be inferred fronGT, , in general resolution iD(n%)
steps. Hence, the Corollary follows byneorem3.2 O
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The refutation of the preceding corollary is irregular. By contrast, the main theorem of this section
shows that for certaip, any regular refutation a&T, , has exponential size. Before proving this lower
bound, we require some definitions and lemmas.

Definition 3.5. For an assignment on X let Supfio) be the set of alil € [n] such thatx assigns a value
to eitherx;j or x;; for some;j.

Recall the notion otritical assignmentor GT, [5]. We generalize it to the case pértial critical
assignments:

Definition 3.6. For a subset of verticeSC [n] apartial critical assignmenfor Sis an arbitrary assign-
mento that gives values to all variablesg, i, j € Sand for any claus€ of the original principleGT,
Cla#0.

Thus an assignment is critical iff it does not violate the properties of the linear ordering (recall that
we associate variablg; with a predicate - j). Hence partial critical assignmendsare in one-to-one
correspondence with all linear orderings on the set SajppThis semantical interpretation is essential
and we will use it throughout the proof.

Lemma 3.7. Assume thatx is a critical partial assignment withSupga)| < n— 2 and the variable
Xj is unassigned by. Then for anye € {0,1}, a can be extended to a critical assignmeritwith
|Supfa’)| < |Supg )|+ 2 such thata’(xj) = €.

Proof. The proof becomes trivial after the decoding of the definitions: we have a linear ordering on a set
Swith |§ < n—2. We need to extend this ordering on one or two new elements (depending on whether
i or j is already contained if§). Clearly we can sdt< j as well ad - j and extend our ordering in the
correct way. O

Lemma 3.8. Assume thatx is a critical partial assignment withSupga)| < n—2 and i, i, i3 are
distinct elements fronn] \ Supg o). Theno can be extended to a total assignment for X so that all
axioms of the original principle GiTexcept the axiomxi,i, V —Xi,i, V —X,i, are satisfied.

Proof. We need to extend the linear ordering on Suppto some total (contradictory) ordering @mj.
For that we extendr to some arbitrary partial critical assignment o\ {i1,i2,iz}, then seiy = i >~
i3 = i1 and makes,i,, i3 greater than the rest of the vertices. O

Lemma 3.9. For n sufficiently large, there exists a restrictipnsuch that for every S and;xwhere S
is a subset ofn] of size at most L00and x; is a variable underlying G, there exist three distinct
elementsii,ip, iz € [n]\ S such thap (i1, iz, i3) = Xij.

Proof. Fix a setS, |§ < en, € = 1/100, and fix some;j. Choosep uniformly at random from all
functions mapping to X. Then the probablity that is bad for(S ;) is

n—en _ 312 31_ 312
<n(n—1)—1>( ") - (1 1)“‘ iz (1_1>n( o < en-e/12

n(n—1) w 2
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Thus the probability that a givemis bad for all(S x;j) is at most
n(n—1)- ( nn) .efn(lfs)3/12 < n2.ghEn, efn(lf£)3/12 —n2. e(H(£)7(17£)3/12)n < n2.e 0248
€

The first inequality follows from the fact thdf]) < (" whereH (x) = —xInx— (1—x)In(1—Xx) is
the entropy function. The last inequality follows by choosing 1/100. The above quantity is clearly
less than 1 fon sufficiently large, and thus there existp aatisfying the conditions of the lemma.]

Theorem 3.10. For n sufficiently large, there exisfs such that any regular resolution refutation of
GT; , has size greater tha@"/2%.

Proof. Fix a goodp such that the above lemma holds. Edbe a regular resolution refutation Gﬂ"
We will single out a particular set of distinct paths in the refutation, and then show that thls set has
exponential size. These paths are defined by successive extensions; at eaclaloodghese paths we
define an auxiliary critical assignmeay that falsifies the clause .

Initially we start with a single path at the root andis empty. Now assume that we have defined
| distinct paths up to the nodes,...,v,. For each nodey with | Supg ey, )| < n/100 we extend the
corresponding path in the following way:

o If a variablex;; is queried atvx and its value is already defined loythen we extend our path
according to this valuay does not change.

e Ifavariablex;; is queried avy and eithei or j does not belong to Supg,, ) thenvy is abranching
nodeand we proceed in the following way. Assume that the answen{) tieads to the vertex
Vi, and 1 tovy,. We extend the existing path up to botly andvy,. For eache € {0,1} we
extenday, by Lemma3.7to an arbitrary partial critical assignmea, . such thato,, (Xj) = €
and| Supp(a, )| < | Sup o, )| +2.

We use this strategy to extend paths till every path leads to a node St cc)| > n/100. Since
the value of| Supg@)| can increase at most by 2 in branching nodes, every path has ah}@&
branching nodes, hence there are at le%2P2distinct paths. Itis left to show that they do not intersect
each other.

For the sake of contradiction, assume that two distinct paths diverge in thevpade then merge
again in the node,. Assume that the variable; is queried invy. The key observation is that; is
forgotten inv, (because the clause in cannot contain both literabg; and—x;). By Lemma3.9 we
can choose three verticasiy, iz ¢ Supgay,) such thap(iy,iz,iz) =% ;. Now let us set by emma3.8
the rest of variables so that all axioms@T,{p exXceptAo = —Xiyi, V " Xiyig V " Xizi; V Xij OF Ap = —Xigi, V
—Xi,i; V 7Xizi, V —Xij are satisfied. We produce a total assignment that falsifies the cauksbeling v
(because it is an extension af,) and all violated clauses contain the forgotign The contradiction
with Lemmaz2.3 proves the Theorem. O

The same procedure can be applied to the set of cl&d&3; [5] that results fronGT, if we replace
all wide clauses with equivalent 3-CNF's, thus yielding a bounded width separation between regular and
general resolution.
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We note that the above lower bound could have been made for an eppligither than a random
p. For example, we could defing(xy, X, x3) by n(i1 +i2) +i1+i3 (mod (3)). However, for simplicity
of presentation, we chose to use a rangmriNote that the above argument actually shows Gf&(gp is
hard for almost alp.

4 Second example: the stone formulas

4.1 Definitions

Our second example will be a generalization of the implication graph formulas, first introduced by Raz
and McKenzie 21], and also used in subsequent papér$]7]. Let G be a directed, acyclic graph, with
fan-in 2,n vertices, and a single sink vertex; we shall call a graph satisfying these condifansted

graph We shall use the phrase “decorated graph” to refer to a @aWy ), whereG = (V,E) is a pointed
graph, andJ is a subset o¥ not containing the sink.

The implication graph formulas encode the following contradictory statement: “All of the source
vertices and the vertices h are colored red, the sink is colored blue, and if both the predecessors of a
vertex are red, so is the vertex itself.” In order to make the formulas difficult for regular resolution, we
express this statement somewhat indirectly, so that instead of speaking directly of colored vertices, we
introduce extra variables speaking of the placement of colored stones on the vertices.

The decorated grapit,U) can be viewed as a board for a board game such as Othello. Additionally
we assume that we have a Saif m > n stones that are to be placed on the board, each of which can be
colored red or blue. (The reader might picture these stones as similar to the discs in the game of Othello,
being red on one side and blue on the other; thus they can be red or blue depending on which side is up.)

Our “stone formulas,Stong¢G,U, S), are defined as follows. LéG,U ) be a decorated graph, where
G = (V,E), V| =n, andSis a set ofm > n stones. Let Sourcé8) be the source vertices &. The
variables of the formula alg j, i € (V\U) andj € S, andR;, j € S The variableR  says “Vertexi
contains stong,” or “Stone j is placed on vertek” while R; says “Stong is colored red,” ane:R; says
“Stone j is colored blue.” We call a variabl@ ; anedge variableand a variabldR; a stone variable
For avertex €V, and a stonéc S, letD; be 1 ifi € U, otherwiseD; is the formula(R{ AR;). The
clauses are as follows. For clarity, some clauses are expressed in implicational form.

() V{R,j|JjeS}ieV\U. These clauses express the fact that every vertex contains some stone
(the vertices iJ should be thought of as containing a particular red stone).

(i) For all verticesk € Source$G) \ U and stones, (R j — R;).

(iii) For the sink vertex and stongj, (Psj — —R;).

(iv) For all verticed, j, k such thati,k) and(j,k) are edges is, wherek € V \ U, and for all stones
t,u,v, (Dit ADjuARw — Ry). Thatis, if the stones u,v are placed on the verticésj,k, andt

andu are both red, then the stomenust also be red. Since this clause expresses an induction rule,
we shall refer to it as an “induction clause” associated with the vértex
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We write Ston€G, S) for the special case of the stone formulas whére 0. It is not hard to check
that the number of variables i&ton€G,S) is (n+ 1)m, and the number of clauses in the formula is

o(men).

Lemma 4.1. For all m and all directed acyclic graphs G, Stqii& S) has a resolution refutation of size
o(men).

Proof. For a vertexk with predecessorsand j, we will say thatk is colored red if we have derived
all clauses of type (ii) fok. The refutation proceeds inductively from the source vertices to the sink,
deriving all clauses of type (ii) for evelyin the graph.

Let us assume that both predecessaand j of a vertexk are colored red. We first derive all of
the clause$—R Vv —-P; vV -R VR,) fort,u,v e S, by resolving clauses of type (ii) against appropriate
induction clauses. There an@ such clauses, and each can be derived in two steps, so this part of the
proof takesO(m®) steps. Next, we derive all clauses of the fofAP; y vV Ry V R,), by resolving the
previously obtained clauses against clauses of type (i). Them¥asach clauses, each of which takes
m steps to obtain, so this part of the proof also taRésr) steps. We then repeat this pattern to derive
all clauses of the forni—-R, vV R,), in O(n?) steps, completing the induction step.

Finally, when the sinlks is colored red, we can derive the empty clause figyrand —Rs in O(m)
steps. The entire refutation takégm®n) steps. O

The refutation constructed in the preceding lemma is highly irregular since, at each induction step,
we resolve on all the stone variables, so that there are paths in the derivation in which a stone variable is
resolved on over and over again. The regularity restriction rules out a refutation of this type, and (as we
shall see below), any regular refutation has to be exponentially large.

4.2 Graph pebbling

In order to prove an exponential lower bound for the stone formulas, we will need to begin with a graph
G with high pebbling number. The next definition describes a slight generalization of the usual concept
of pebbling number.

Definition 4.2. Let (G,U) be a decorated graph. A configuration is a subsét.ofA pebblingof a
vertexv from U in G is a sequenc€y,C;,...,C; of configurations, wittCy = 0 andv € Cy, in which
each configuratiof;, 1 follows from C; by one of the following rules:

1. Any vertexu € U U Source§G) can be added tG;, i.e.Ci11 = G U {u}.
2. A vertexu can be added tG; to getCi;1 = C; U {u}, if allimmediate predecessors ofire inCi.
3. Vertices can be removed, so tiat; C G.

Thecomplexityof a pebbling ofv from U is the maximal size of any configuration in the sequence. The
pebbling number PelG,U ) of a decorated grap{G, U) is the minimal numben for which there exists

a pebbling of the sink o6 from U with complexityn. Thepebbling number Pels) of a pointed graph

is the pebbling number of the decorated gr&@h0).
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Pointed graphs requiring large pebbling number were constructed in a paper by Celoni, Paul and
Tarjan, based on a construction of Valiant.

Lemma 4.3 (Celoni, Paul and Tarjan B]). There is a constar® > 0 such that for all sufficiently large
n, there is a pointed graph G with n vertices that has pebbling numbgi@eb n/logn.

The following definition is useful in describing the effect of restrictions on stone formulas.

Definition 4.4. For a pointed grapt = (V,E) andv € V, let G[v] denote the induced subgraph@bn
those vertices from whichv is reachable, i. e. there is a directed path fioto v.

The next lemma shows that if we add a new “free” vertex to a decorated graph with high pebbling
number, then we can always find a subgraph with high pebbling number.

Lemma 4.5. Let (G,U) be a decorated graph with pebbling numbetfi, and i an vertex of G not in
U. Then eithe(G,U U {i}) or (G[i],U N G][i]) has pebbling number at least p.

Proof. Assume that botiG,U U {i}) and (G]Ji],U N GJi]) have pebbling number at mopt- 1. Then
there is a legal pebblinQo, ...,C = {i} of G[i] fromU NGJi] and a legal pebblinBo, . .., Dy, of G from
U U{i} each of complexity at mogi— 1. Then

Co,...,C,D1U{i},...,.DmU{i}

is a legal pebbling ofG,U ) from U of complexity at mosp, contradicting the assumption th@,U )
has pebbling numbegr+ 1. O

The next definition picks out a type of vertex that plays a central role in the restrictions described in
the following subsection.

Definition 4.6. Let (G,U) be a decorated graph. A vertex G is importantif there is a path fronv to
snot containing any vertex id, otherwisev is unimportant

Lemma 4.7. If Peb(G,U) = p, then there exist at least-p2 important vertices in G.

Proof. We prove the lemma by showing tha{,U ) is a decorated graph, then there is a legal pebbling
of the sink of G from U in which at most two unimportant vertices occur in every configuration. Let
Co,...,Cy be alegal pebbling of the sirdkfrom U, andDy, . .., D, the sequence obtained by settDg=
(Gi\J), whered is the set of unimportant vertices in the pebbling. We argue by induction, proceeding
backwards fronD, to Dg, that the resulting sequence of configurations (with no unimportant vertices)
can be converted into a legal pebblingsdfom U, by using at most two additional vertices frdgnto
go from one configuration to another in the sequence.

By definition, s is important, so we only need to examine the case wlBgrgis obtained fronTC;
by an appropriate rule. Let us suppose Bat was obtained fronT; by the Rule 2 inDefinition 4.2,
and that the vertex is important, but one or both of the predecessors &f unimportant. This can
only happen if each predecessor in question Id irHence, we can obtaiD;, ; from D; by one or two
applications of Rule 1 iDefinition 4.2, followed by an application of Rule 2, followed by a deletion of
the one or two vertices added when applying Rule 1. O
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4.3 Critical assignments for stone formulas

In the remainder of the paper, we concentrate on certain special assignments for the formulas
StonéG,U,S). These assignments are determined by two items, a mapping from (some of the) ver-
tices to stones, and a coloring of some of the stones.

Definition 4.8. Let G = (V,E) be a pointed graph, arfsla set of stones, whe{§ > |V|. A restriction
p = (u, k) for (G,S) is determined by

1. A bijective mapu from a subset o¥ to S,

2. A coloring x assigning a subset &to the set{R,B} (i. e., we assign the colors red and blue to
some of the stones).

Theassignment determined by is defined by setting:
e o(R;)=1if(i,j)eu,o(R,;)=0ifiorjarein Donfu) URan(u), but(i, j) & u;
e 6(Rj))=1if x(j) =R o(R;) =0if x(j) =B;
e If jisinthe domain of, but not in the range qi, thenR ; =0, for alli € V.

Thusp is a restriction on the decorated graph, ani a corresponding restriction on the proposi-
tional formula. If|u| =r and|k| = s, then we say that is a restriction withparameters rands. To
simplify notation, we shall identify a restriction with the assignment that it determines.

There are two special types of restrictions that are important in what follows. The first type is one in
which none of the stones placed on vertices are assigned colors, that is to sgy) RBom(x) = 0,
and furthermore, the parameterands are equal. In this case, we shall describe- (u, k) as anr-
restriction The second special type of restriction is one in wtatttof the stones placed on vertices are
assigned colors, that is, Ran € Dom(k). This second type of restriction we caltamping

Definition 4.9. Let (G,U) be a decorated grapk,a vertex inG, andy a partial coloring ofG, that is,
x is a map from a subset & to {R B}. We say thajy is ak-based coloringf (G,U) if the following
conditions hold:

1. IfieU, theny(i) =R

2. There is a pathx in G from k to the sink ofG so that the vertices in the path are exactly those to
which y assigns the color blue;

3. Ifavertexi is notinG[k] U, theny (i) = R.
We say thaty is k-critical if it is a total coloring ofG.
Lemma 4.10. If (G,U) is a decorated graph and k an important vertex of G, then there is a k-critical

coloring of (G,U).
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Proof. By assumption, there is a path frdoto the sink not passing through any verticetlinColor all
the vertices in this path blue, and all other vertice&ired. Sincek is the only blue vertex i, all of
whose predecessors are colored red, thisigatical coloring of(G,U). O

If x is a coloring of a decorated grap6,U ), then a clamping = (u, k) is said to becompatible
with x if Dom(x) = Dom(u), and for any vertex in Dofiy) = Dom(u), x(u(i)) = x(i). If x isa
k-based coloring, then we say thatis a k-basedclamping, and that it i&-critical if it is compatible
with a k-critical coloring. The reader can easily check that is ak-critical clamping of(G,U ), then
it forces all the clauses itong¢G,U, S) to true, except for a single induction clause, which is forced to
false. In addition, we say that a restriction is compatible wikhbmsed coloring if it can be extended
to a clamping compatible witjg.

The next two lemmas, which are straightforward to prove, are used repeatedly in the rest of the
proof.

Lemma 4.11. Let(G,U) be a decorated graph, anygla partial coloring of G= (V,E). In addition, let
S be a set of stones wit8\ Dom(x)| > |V|, andp = (u, k) a restriction for(G, S) so that Donfu) C
Dom(yx), and x(u(i)) = x(i), whenever i Dom(u) N Dom(y) and x(u(i)) is defined. Them is
compatible withy.

Proof. Extendu to a bijectiony’ from Dom(y) to S\ Dom(x), and then set the colors of stones in the
range ofu’ by settingx’(u(i)) = x(i) for all i € Dom(y) = Dom(u’). Thenp’ = (u’, k') is a clamping
compatible withy. O

The next lemma follows readily from the definitions.

Lemma 4.12.If p = (u, k) is a k-based clamping of Stofg U, S) with parameters,is, then
StonéG,U,S)[p = StonéG[k],U’,S) ,
where U = G[k| N (U UDom(u)) and $= S\ Dom(x).

Lemma 4.13. Let p = (u, k) be an r-restriction for(G,S), where G has pebbling number N, and
|S > |V|. Then there is a vertex& G andp’ = (u, k') so that:

1. p’ = (u,«’) is a k-based clamping ¢, S), with k C «’;
2. (G]K],U) has pebbling number at least-Nr, where U= G[k] N Dom(t).

Proof. We construcip’ by first constructing an appropriakebased coloringy of G, with Dom(y) =

Dom(u), and then using.emma4.11to find the requireck-based clamping. At each stage in the
construction, we are given a designated vekiexG, and a-based coloring of G. Initially, no vertices

in G are assigned colors, and we choose the sink as the designated vertex. In successive stages, we
choose a new designated verkéx G, and a new coloring’, and we make these choices in such a way

as to maximize the pebbling number of the decorated g&iki], Gk NU (K, x’)), whereU (K, x’) is

the set of vertices iG[k'] mapped tdR by x'.
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To be more precise, let us suppose that we hafi¢ =t, and that the stone has not yet been
assigned a color. L&l = U (k, x). Compare the two values

p1 = Pel(G[k],U U{i}) and p2 = Pel(G[i],UNG]i]) .

If py > p2, then sek’ = k and extendy by settingy’(i) = Randy/(i’) = Rfor all i’ that are unimportant

in (GIKl,Uu{i}). If p1 < pz then sek’ =i, choose a path i fromi to k, and extendy to ani-based

coloring, x’, of (G,U N@i]). LettingU’ =U (K, '), by Lemma4.5 Pebl(G[K'],U’) > Pel(G[k],U) — 1.
Letk andy be the designated vertex akidbased coloring produced at the end of this process, that is,

when Donfy) = Dom(u). By Lemma4.11, p is compatible withy, so that there is alebased clamping

p’ = (u, ') compatible withy. By definition,U (k, x) = G[k|nDom(u), and since the construction has

r steps(G[k],GlkjnDom(u)) has pebbling number at ledst—r. O

5 The lower bound for stone formulas

The general structure of the proof of the lower bound is similar to that of Beame and Pit&8ksi’s |
simplified lower bound proof for the pigeonhole principle. That is, we will assume for the sake of
contradiction that we have a short (sub-exponential) refutation of a stone formula. We will first show that
we can apply a restriction to some (but not too many) of the variables such that the resulting refutation,
after the restriction, is still a refutation of a stone formula on a reduced set of variables, that contains
no complex clauses. Secondly, we argue separately that any regular resolution refutation of the formula
must contain a complex clause, and thus we reach a contradiction.

Definition 5.1. A clauseC is calledd-complexf one of the following holds:
1. C contains at least distinct stone variables, or

2. There is a matching of size at leasfrom vertices to stones such tl@atontains the negative edge
literals—R j for each paifi, j) in the matching.

3. There is a subs&V of at leastd vertices, such that for alle W there is a subsd& of at leastd
stones, such that all literaBj, i € W, j € B are present icC.

There are three parameters in our lower boupd$, ande. The lower bound is of the form
25n/(l0gn)*: the parameter associated with a complex clausmjdogn and the size of the restriction

is yn/logn.

Lemma 5.2 (Restriction Lemma). Lety, §, € be constants such that< v,5,& < 1and3§/e? <y <
€/2. Let G= (V,E) be a pointed graph witl/| = n, and let R be a resolution refutation of St¢GeS),
S = 3n, of size at mosts 257(09"° Then there exists an r-restrictign r = yn/logn, such that Ro
has no(en/logn)-complex clauses.

Proof. We will divide up the complex clauses into those of the first type and those of type two or three.
For those of type two or three, we will greedily choose a matching between vertices and stones that
forces all complex clauses of these types to true.
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The total number of pairs M x Sto choose from is 8; each complex clause of the third type can
be forced to true by choosingRy; from (en/logn)? pairs; each complex clause of the second type can
be forced to true by choosingRy; from (¢(3n—1)n)/logn > (en/logn)? pairs. Thus, by averaging,
there exists & ; such that at leasi(en/logn)?/3n? > s(¢2/3(logn)?) complex clauses of the second
and third type are forced to true.

Hence to force all the complex clauses of these types to true we need to choose a matching of size

logs dn/ (logn)3 3n yn
€2 = €2 /3(logn)? = €?logn = logn °
log (1/(1— 3 ))

logn)?

Now for the clauses of the first type, notice that there are-3n/logn > 2n stones left that are
untouched by the matching chosen above, and any complex clause of the first type still c@ntains
y)n/logn > en/2logn literals corresponding to these stones, sipeee/2.

Since the refutation has size at mgsthere are at mostclauses of the first type, each containing
en/2logn distinct stone variables that have not been set by the restriction already chosen. Each of these
is thus set to one byn/2logn out of at least 4 choices of stone literals.

By averaging, there must be one stone literal that fos¢es8logn) of the complex clauses of type
one to true. Thus to force all complex clauses of this type to true we need to set

3
logs <6n/(|ogn) < 86n m

log (1/(1_ 8Iggn)> ~ ¢&/8logn ~ g(logn) = logn

stone literals. 0

Our last lemma shows the existence of a complex clause for any initial graph with sufficiently large
pebbling number. This is the only part of the proof in which the regularity restriction is used.

Lemma 5.3 (Complex Clause Lemma)Let (G,U) be a decorated graph with
Pel(G,U) =N =Q(n/logn) ,

where G has n vertices. Then @ = m= 2n, and n sufficiently large, any regular resolution refutation
of StonéG,U, S) contains anN/16)-complex clause.

Proof. Let R be a regular resolution refutation 8ton¢G,U,S). We will follow a particular pathr
partway through the refutation; this path will be determined by giving a strategy for answering queries.
The path is defined by successive extensions; at each stage in the definition, we define three auxiliary
objects. First, at each stage, we single owutesignated vertex I G, second, we define kbased
coloringy of G, third, we define a restrictiop compatible withy. The answers given along the path at
each stage are compatible with the partial assignneeretermined by. At each stage, the designated
nodek and the coloring; determine the subgrayik] of G, together with a subsét of G[k], consisting
of the vertices of G[k] with x(i) =R.

Initially, we start the path at the root of the refutation. The designated vertex is the sin,
x(u) =RforueU, andy(s) = B. Now assume that we have defined the path up to a motiyether
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with a designated vertelx, a k-based coloringy, and a restrictiorp compatible withy. In addition,

let (Gy,U,) be the decorated gragis(k],U), whereU is the set of vertices iB[k| colored red byy.

We want to extend the path by providing an appropriate answer to the variable queried at the node
we need also to define a new designated vektea newk’-based coloringy’ and a new restrictiop’
compatible withy’. In each case, the answers to the queries will be given as an extension of the current
restrictionp — unless the current restriction answers the query already, as can happen in the last case
below.

o If a stone variabld; is queried at and it is not currently placed on a vertex, i. e. for no veitex
do we havep (R j) = 1, then extengb by coloring j red or blue arbitrarily. S&t’ =k, x' = x.

e If a stone variableR; is queried at, and it is already placed on a vertex.e.p(R ;) = 1, then
we answer as follows:

— If i is colored byy then answer accordingly. That is,4fi) = R, then sep(R;) =1, and if
x(i) =B, then sep(R;) =0. Then sek’ = kandy’ = .

— If i is not assigned a color by, but is not important with respect 1@, ,U,), then set
p(R;j) = 1. Extendy by settingy’(i) = R, and sek’ = k.

— Otherwise, answer to maximize the pebbling number of the associated decorated graph. That
is, compare the two values

p1 = PebG,,U, U{i}) and p2 = PelG,[i],U, NGJi]) .

If p1 > p2, then sek’ = k, extendy by settingy’(i) = Randy’'(i’) = R for all i’ that are
unimportant in(G,,U, U{i}), and sep(R;) = 1.

If p1 < pz then setG¢ = G, [i], choose a path i, from i to k, extendy to ani-based
coloring ofG, and sep(R;) = 0.

o If an edgeR ; is queried atv, but the assignmengy, defined byp is not defined aR j, then set
p(R,j) = 1 Otherwise, answer consistent with the assignment defined lpy Setk’ = k and

X =x
Claim 5.4. There is a node on the path defined above where exag@shbnes are queried.

The path can only end in an initial clause of type (i) or an induction clause of type (iv). The former
case can only occur if all the stones have received colors, and thus all stones must have been queried.
In the latter case, note that at the root, we hBeg G, ,U,) = N, by Lemma4.5 the pebbling number
decreases by at most 1 with each answer to a query, and only at nodes where a stone is queried. But when
we reach an induction clause, the pebbling number has decreased to 0. Therefore the path followed by
the above strategy will not finish until at ledststones are asked about. Thus, there is some &éaie
the path where exact/2 stones are queried.

The pair(Gg,Ug) associated witl§ has pebbling number at leasy2. This follows from the fact
that the pebbling number decreases by at most 1 at each stone query, and we have queridd /&actly
stones. Byremmad4.7, there are at lea®/2 — 2 important vertices ifiGg, Ue ).
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Claim 5.5. The clause € attached to the nodé must be N16 complex.

Letp = (u, k) be the restriction associated wih Let| be the set of important vertices (@, U¢ ).

If at leastN /8 of the vertices il are mapped by and the mapping is remembered, i. e., the corre-
sponding edge variables set to 1 pyoccur negated i€, thenC; is anN/8-complex clause of type
two. Hence, in the remainder of the proof, we shall assume that there is a Eubdesf at leastN/8
vertices that are either unmapped foyr are mapped by but all of the edge variables corresponding
to this part of the mapping are forgotten.

There are several cases. We will introduce some terminology to help with these cases. We patrtition
the set ofN/2 stones queried on the path&ointo thefree stonesF, and theattachedstones A. F
consists of those stones queried along the path tleat are not in the range ¢f; A are those stones
queried on the path t§ that are in the range qf. There are two general cases to consider. The first
case (which is slightly easier) is whéf| > N/4 and the second case is whéfn > N /4.

Assume first thaf-| > N/4. We will show that the claugg: attached to the nodg must beN/16-
complex. The first subcase is when at |efdg8 of the stones i occur inCg. In this case(Ce is an
N/8-complex clause of type one. If this subcase does not occur, then all&éaef the stones ifr are
forgotten at the nodé. LetF’ C F be this set of at lea$t /8 forgotten free stones. Now we claim that
for everyi € 1" andt € F/, the literalR y must occur irCe, and thusC; is anN/8-complex clause of type
three.

Suppose that the liter# ; does not occur il for somei € I, t € F’. Then we can modify the
restrictionp to p’ by mappingi tot, and ifp(i) = u, whereu # t, then we assign a color g if it was
not colored already. Because I’, we know that for allj —R j does not occur i€¢), and thus it follows
thatp’(Cs) = 0. Sincei is important, there is aitbased coloring extending the coloringassociated
with &, and this-based coloring can be extended ta-amitical coloring. Leto be ani-critical clamping
compatible with this coloring, extending the restrictighin whichc (R ) = 1 ando (C¢) = 0. The only
initial clause falsified by is an induction clause associated wiitbontaining the variablg.. However,
by Corollary 2.4C; was inferred from clauses none of which contain the forgotten varRbl€his is
a contradiction, so it follows tha&: must contain the variabld3;.

We will now argue the second case, whah> N/4. LetB be the subset of vertices that are mapped
by p to stones irA. Clearly,|B| = |A|. The first subcase, 2a, is when at |ddgil6 of the stones i are
remembered. In this caggy is anN/16-complex clause of type one.

The second subcase, 2b, is when for at |83416 of the vertices in B, the mapping of into A
is remembered, i. e., the negative edge litefBl; wherej = u(i) occurs inC§. In this casecé is an
N/16-complex clause of type two.

The third subcase, 2c, is when for at ledkt1l6 of the vertices in B, at leastN/2 zero-edges
containingi are remembered. That is, the edge varidbleoccurs inC for at leastN/2 distinctj’s. In
this caseC is anN/16-complex clause of type three.

If none of the subcases 2a, 2b or 2c occur, then there ar8'setB andA’ C A each of size exactly
N/16 such thap defines a mapping fromd’ to A’ but the mapping is forgotten; the color of each stone
in A is forgotten, and for everye B', at mostN /2 zero-edges out dfare remembered &t We claim
that for everyi € I’ — B’ andt € A, the literalR s must occur irCe.

Suppose that this is not the case andAgtoe some literal that does not occurG@g, wherei € I,

t € A' and leti’ € B’ be the vertex that is mapped tdy p. Then we will modify the restrictiop to
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obtainp’ as follows. Firstp’ will mapi tot. Secondlyo’ will map i’ to some unqueried storesuch

that the edge froni tot’ has not already been remembered to be 0. Further, the color associatéd with
will be chosen to be the same as the color givehlig p; that is, the underlying coloring of the graph
will be the same fop and forp’. It will still be the case thap’(C;) = 0 since we have not tampered with
any of the literals that are remembered (i. e., that occ@zih Now as in Case 1, we will extergl to
ani-critical coloring,o, extending the restrictiop’. Since the only initial clause falsified ky contains

the variableR;, andR; is not remembered, we have reached a contradiction, andCthoaist contain

all such variable® ;, showing that it is aftN /16-complex clause of the third type. This completes the
proof of the complex clause lemma. O

We are ready to state the main theorem of this section.

Theorem 5.6. Let G be a pointed graph with n vertices and pebbling number f(n/logn). Then
any regular resolution refutation of Stof®, S), where|S = 3n requires siz@®2("/(0gn)?)

Proof. We start with a pointed grap8 with n vertices and pebbling numb&el(G) > Bn/logn, in
accordance withemma4.3. Sete = /32,7y =¢/2 = /32 ands = £3/6 = 3/199608, so that we
have 3 /e? < y < /2. Now assume that there is a regular resolution refutdtioh StongG, S), with
size at mosS = 23"/(ogn’ By | emma5.2 (the Restriction Lemma), there is a restrictiprof size
r = yn/logn, such thaR[p has no(en/logn)-complex clauses.

By Lemma4.13 there is a vertek € G andp’ = (u, x’) so thatp’ is ak-based clamping ofG, S),
with k¥ C k/, and(G[k], G[kl nDom()) has pebbling number at leddt-r > N/2. By Lemma5.3(the
Complex Clause Lemma), the refutatiBfip must contain ¢3n/32logn)-complex clause, contradict-
ing the conclusion of the previous paragraph. O

6 Open problems

The present paper gives a separation between regular and general resolution that seems close to opti-
mal. Nevertheless, there are still mysteries surrounding the exact effect of the regularity restriction. As
mentioned in the introduction, it was widely believed in the early years of research on the complexity
of resolution that optimal proofs are always regular. This belief would be justified, in a sense, if the
conjecture formulated below were proved to be true.

The most deeply investigated family of tautologies are those based on matchings in graphs, of which
the best known are the pigeonhole formulas. These examples are based on@ifaphghich no
perfect matching exists; the corresponding contradictory CNF forf(@ asserts thab has a perfect
matching. For example, the pigeonhole formBIR, can be understood as the form&léH ), whereH
is the complete bipartite grapfi(n+ 1,n). Other well-studied examples are the graph-based formulas
of Tseitin [23]. For both of these families of examples, the shortest known resolution refutations are
regular.

Conjecture 6.1. For contradictory formulas expressing matching principles in graphs, and also for the
graph-based examples of Tseitin, there is always a regular refutation of minimal size.

THEORY OF COMPUTING, Volume 3 (2007), pp. 81-102 97


http://dx.doi.org/10.4086/toc

M. ALEKHNOVICH, J. DHANNSEN, T. PITASSI, AND A. URQUHART

A proof (or disproof) of this conjecture would shed light on the question of exactly when the reg-
ularity restriction helps in searching for short refutations. For the pigeonhole formulas, we can make
an even more specific conjecture, derived from Caoglk \vho gives the size of the shortest known
resolution refutation oPHR, — the proof in question is in fact regular.

Conjecture 6.2. Let PHR, be the set of clauses asserting that there is an injective mapping from a set of
sizen+ 1 into a set of siz@, expressed as in Haken'’s pap&b]l Then the minimum size of a refutation
of PHR, is n(n+3)2"2,

A second open problem concerns the relative complexity of DPLL proofs augmented with clause
learning. The most successful complete satisfiability solvers are based on performing a simple back-
tracking procedure, often called DPLL search, augmented with a form of caching known as clause
learning L9, 12, 20, 2]. It is known that clause learning is at least as efficient as regular resoldfion [
and it is an important open problem to resolve the complexity of clause learning with respect to unre-
stricted resolution. In particular, it is known that Resolution polynomially simulates clause learning, but
does clause learning also polynomially simulate Resolution? We believe that the answer is no, and we
conjecture that the two families of formulas presented in this paper require superpolynomial-size clause
learning proofs.
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