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1 Introduction

Propositional proof complexity is currently a very active area of research. In the realm of the theory of
feasible proofs it plays a role analogous to the role played by Boolean circuit complexity in the theory
of computational complexity.
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The motivation to study the complexity of propositional proof systems comes from two sides. First,
it was shown in the seminal paper of Cook and Reckhow [10] that the existence of “strong” systems in
which all tautologies have proofs of polynomial size is tightly connected to the NP vs. coNP problem.
This direction explains the considerable efforts spent in proving super-polynomial lower bounds for
proof systems that are as strong as possible.

The second motivation concerns automated theorem proving. The main goal is to investigate the
efficiency of heuristics for testing satisfiability, and to give some theoretical justification for them. It
turns out that the more sophisticated our propositional proof system is the harder it is to find proofs
of near-optimal size. The most thoroughly studied and oldest class of algorithms for satisfiability is
based on simple proof systems such as resolution, or even on restricted subsystems of resolution. This
partially explains why it is of interest to study such simple and weak proof systems and investigate how
they relate to each other.

A lot of recent research has concentrated on the separation between different variants of resolution.
In a series of papers [13, 14, 6, 4] the following relationships were studied: tree-like resolution vs.
resolution, Davis-Putnam resolution vs. general resolution, regular resolution vs. general resolution. For
all pairs except the latter, exponential gaps have been produced.

The regularity restriction was first introduced by Grigory Tseitin in a ground-breaking article [23],
the published version of a talk given in 1966 at a Leningrad seminar. This restriction is very natural,
in the sense that algorithms such as that of Davis, Logemann and Loveland [11] (often described as
the “Davis-Putnam procedure” and the prototype of almost all satisfiability algorithms used in practice
today) can be understood as a search for a regular refutation of a set of clauses. If refutations are
represented as trees, rather than directed acyclic graphs, then minimal-size refutations are regular, as
can be proved by a simple pruning argument [24, p. 436].

The main result of Tseitin’s paper [23] is an exponential lower bound for regular resolution refuta-
tions of contradictory CNF formulas based on graphs. Tseitin makes the following remarks about the
heuristic interpretation of the regularity restriction:

The regularity condition can be interpreted as a requirement for not proving intermediate
results in a form stronger than that in which they are later used (ifA andB are disjunctions
such thatA⊆ B, thenA may be considered to be the stronger assertion of the two); if the
derivation of a disjunction containing a variableξ involves the annihilation of the latter, then
we can avoid this annihilation, some of the disjunctions in the derivation being replaced by
“weaker” disjunctions containingξ .

These heuristic remarks of Tseitin suggest that there is always a regular resolution refutation of min-
imal size, as in the case of tree resolution. Consequently, some authors tried to extend Tseitin’s results
to general resolution by showing that regular resolution can simulate general resolution efficiently. The
results of Goerdt [14] and the present paper show that these attempts were doomed to failure. However,
it remains an open question whether this simulation might not hold for some special cases. In the con-
clusion of the paper, we make a conjecture to the effect that for the formulas of Tseitin, as well as other
well-known families of examples, there is always a minimal-size regular refutation.

The first example of a contradictory CNF formula whose shortest resolution refutation is irregular
was given by Wenqi Huang and Xiangdong Yu [16]. Andreas Goerdt [14] gave the first super-polynomial
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separation between regular resolution and unrestricted resolution by constructing a family of formulas
that have polynomial-size resolution proofs, but require quasipolynomial-size regular resolution refuta-
tions.

In this paper, we present two new families of formulas, and prove that they have simple polynomial-
size resolution refutations, but require exponential-size regular resolution refutations. Our first example
is technically simpler, and results in a stronger lower bound. The second example has a natural combina-
torial interpretation, and the corresponding lower bound technique may be useful for other applications.

The paper is organized in the following way.Section2 contains definitions necessary for both
examples. We give these examples independently in Sections3, 4, and5.

2 Preliminaries

A literal is a propositional variablex or its negation¬x. A clauseis a set of literals. Theresolution
principle says that ifC andD are clauses andx is a variable, then any assignment that satisfies both
of the clausesC∨ x andD∨¬x also satisfiesC∨D. The clauseC∨D is said to be aresolventof the
clausesC∨ x andD∨¬x derived byresolving onthe variablex. A resolution derivationof a clauseC
from a CNF formulaF consists of a sequence of clauses in which each clause is either a clause ofF ,
or a resolvent of two previous clauses, andC is the last clause in the sequence; it is arefutationof F if
C is the empty clauseΛ. Thesizeof a refutation is the number of resolvents in it. We can represent it
as a directed acyclic graph (dag) where the nodes are the clauses in the refutation, each clause ofF has
out-degree 0, and any other clause has two arcs pointing to the two clauses that produced it. The arcs
pointing toC∨ x andD∨¬x are labeled with the literalsx and¬x respectively. It is well known that
resolution is asoundandcompletepropositional proof system, i. e., a formulaF is unsatisfiable if and
only if there is a resolution refutation forF .

A resolution refutation isregular if on any path fromΛ to a clause inF (in the directed acyclic graph
associated with the refutation), each variable is resolved on at most once along the path.

An assignmentfor a formulaF (sometimes we call it also arestriction) is a Boolean assignment
to some of the variables in the formula; the assignment istotal if all the variables in the formula are
assigned values. IfC is a clause, andσ an assignment, then we writeCdσ for the result of applying
the assignment toC, that is,Cdσ = 1 if σ(l) = 1 for some literall in C, otherwise,Cdσ is the result of
removing all literals set to 0 byσ from C (with the convention that the empty clause is identified with
the Boolean value 0). IfF is a CNF formula, thenFdσ is the conjunction of all the clausesCdσ , C a
clause inF .

If R= C1, . . . ,Ck is a resolution derivation from a formulaF , andσ an assignment to the variables
in F , then we writeRdσ for the sequenceC1dσ , . . . ,Ckdσ .

Lemma 2.1. If R is a regular resolution derivation of C from a formula F, andσ an assignment, then
there is a subsequence of Rdσ that is a regular resolution derivation of a subclause of Cdσ from Fdσ .

Proof. This is a straightforward induction on the length of the derivation fromF .

Every regular resolution refutation can be represented by a read-once branching program [17]. Al-
though we prefer to speak in terms of refutations rather than branching programs, we nevertheless need
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some ideas from the latter framework. A path in a resolution refutation can be considered as determined
by the answers to a series of queries. That is to say, starting at the root of the refutation, let us follow
a path in the proof according to the following recipe. If a nodeν in the refutation is labeled with a
clauseC∨D derived from clausesC∨ x andD∨¬x, then we say that the variablex is queriedat ν . If
we extend the path to the node labeled withC∨ x, then we say that we have answered the query with
“x,” while in the other case, we have answered with “¬x.” Thus every pathπ in the refutation from the
root to a node in the proof corresponds to a set of literals constituting the set of answers to the queries
in the path; conversely the set of literals constituting the answers uniquely determines the path. The
assignment defined by setting all of the literals in this set to 0 falsifies all the clauses labeling nodes in
the path.

For any node in a regular refutation we can define an important set offorgottenvariables:

Definition 2.2. For every nodeν in a regular refutation labeled with a clauseC, we say that a variable
is forgotten atν if it does not occur inC, but is queried on some path from the root toν .

The intuition behind this definition is given by the following lemma.

Lemma 2.3. If the variable x is forgotten at a nodeν in a regular refutation, then no axiom reachable
from ν can contain x. In particular, the clause labelingν must be inferred from initial clauses that do
not contain x.

Proof. If x is forgotten atν , but there is an axiom reachable fromν containingx, thenx must have been
removed by resolution by some inference on the path fromν to this axiom. However, this contradicts
the regularity restriction.

Clearly this result only applies to the case of a regular refutation. This corollary will be a central
point in our lower bounds for regular resolution. Our strategy will be to find a nodeν with a forgotten
variablex and show that all initial clauses free ofx do not imply the clauseCν even semantically; to
show this we produce an assignmentσ that falsifies only clauses containingx, whileCνdσ = 0.

3 First example: GT′n,ρ formulas

Our first example is based on the ordering principle first considered by Krishnamurthy [18].

Definition 3.1. Let X be the set of variablesxi j for i, j ∈ [n], i 6= j. The contradictionGTn consists of
the following axioms:

xi j ↔¬x ji 1≤ i < j ≤ n ,

¬xi1i2 ∨¬xi2i3 ∨¬xi3i1 for any distincti1, i2, i3 ∈ [n] ,∨
k∈[n] ,k6= j

xk j j ∈ [n] .

Our version of the contradictionGTn differs slightly from the one considered in the literature, since
the transitivity axioms are usually written in the formxi1i2 ∧xi2i3 → xi1i3 (that is to say,(¬xi1i2 ∨¬xi2i3 ∨
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xi1i3)). It is more convenient for us to write these axioms in the symmetric form¬xi1i2 ∨¬xi2i3 ∨¬xi3i1;
these representations are equivalent in the presence of the axiomsxi j ↔¬x ji . Note that there are exactly
two such transitivity axioms for any set of three distinct elementsi1, i2, i3 ∈ [n].

This contradictory principle can have several semantical interpretations; our proof will essentially
depend upon the following one. Consider the variablexi j as a predicatei � j. The first two groups of
axioms assure that� is a total linear ordering on the set[n]. The principleGTn claims that any such
ordering never has a maximum. Krishnamurthy [18] conjectured thatGTn requires superpolynomial-
size resolution refutations. This conjecture was refuted by Gunnar Stålmarck, who proved the following
result.

Theorem 3.2. There exist regular resolution refutations of GTn of size O(n3).

Proof. The paper of St̊almarck [22] exhibits an explicit refutation ofGTn of this size. Since the number
of clauses inGTn is alsoO(n3), the size of the refutation is linear in the number of clauses. It is easy to
check that St̊almarck’s refutation is in fact regular.

This contradiction was later used by Bonet and Galesi [5] to show the optimality of the size-width
relationship. By a slight modification of Stålmarck’s construction, they showed that the refutation in the
preceding theorem can be taken as an ordered resolution refutation (or “Davis-Putnam” refutation).

We modify GTn to make it harder for regular resolution, but preserve its unrestricted resolution
complexity. For that we replace some axiomsC with a pairC∨xC, C∨¬xC. The variablexC should be
chosen in a certain precise way to simplify our lower bound.

Definition 3.3. Let X be the set of variablesxi j i, j ∈ [n], i 6= j; the cardinality ofX is n(n−1). Let T
be the set of all triples(i, j,k), i 6= j 6= k, i, j,k ∈ [n]. The cardinality ofT is clearly

(n
3

)
. Let us fix a

functionρ from T to X.
The set of clausesGT′n,ρ consists of the following axioms:

xi j ↔¬x ji 1≤ i < j ≤ n ,∨
k∈[n] ,k6= j

xk j j ∈ [n] ,

¬xi1i2 ∨¬xi2i3 ∨¬xi3i1 ∨ρ(i1, i2, i3) for (¬xi1i2 ∨¬xi2i3 ∨¬xi3i1) ∈GTn ,

¬xi1i2 ∨¬xi2i3 ∨¬xi3i1 ∨¬ρ(i1, i2, i3) for (¬xi1i2 ∨¬xi2i3 ∨¬xi3i1) ∈GTn .

For each transitivity axiom in the original setGTn involving verticesi1, i2, i3, the set of clausesGT′n,ρ

contains exactly two axioms produced by adding a new literalρ(i1, i2, i3) or its negation¬ρ(i1, i2, i3).
In the definition above, the condition “for(¬xi1i2 ∨¬xi2i3 ∨¬xi3i1) ∈ GTn” must be understood relative
to a choice of ordering of the literals in the clause in question. That is to say, in defining the new
set of clauses, we need to make an arbitrary choice of the three possible representations of the clause
{¬xi1i2,¬xi2i3,¬xi3i1} as an ordered disjunction.

Corollary 3.4. For anyρ, there is a refutation of GT′n,ρ in general resolution of size O(n3).

Proof. It is easy to see that the principleGTn can be inferred fromGT′n,ρ in general resolution inO(n3)
steps. Hence, the Corollary follows byTheorem3.2.

THEORY OFCOMPUTING, Volume 3 (2007), pp. 81–102 85

http://dx.doi.org/10.4086/toc


M. A LEKHNOVICH , J. JOHANNSEN, T. PITASSI, AND A. URQUHART

The refutation of the preceding corollary is irregular. By contrast, the main theorem of this section
shows that for certainρ, any regular refutation ofGT′n,ρ has exponential size. Before proving this lower
bound, we require some definitions and lemmas.

Definition 3.5. For an assignmentα onX let Supp(α) be the set of alli ∈ [n] such thatα assigns a value
to eitherxi j or x ji for somej.

Recall the notion ofcritical assignmentfor GTn [5]. We generalize it to the case ofpartial critical
assignments:

Definition 3.6. For a subset of verticesS⊂ [n] a partial critical assignmentfor S is an arbitrary assign-
mentα that gives values to all variablesxi j , i, j ∈ Sand for any clauseC of the original principleGTn,
Cdα 6≡ 0.

Thus an assignment is critical iff it does not violate the properties of the linear ordering (recall that
we associate variablexi j with a predicatei � j). Hence partial critical assignmentsα are in one-to-one
correspondence with all linear orderings on the set Supp(α). This semantical interpretation is essential
and we will use it throughout the proof.

Lemma 3.7. Assume thatα is a critical partial assignment with|Supp(α)| < n−2 and the variable
xi j is unassigned byα. Then for anyε ∈ {0,1}, α can be extended to a critical assignmentα ′ with
|Supp(α ′)| ≤ |Supp(α)|+2 such thatα ′(xi j ) = ε.

Proof. The proof becomes trivial after the decoding of the definitions: we have a linear ordering on a set
Swith |S|< n−2. We need to extend this ordering on one or two new elements (depending on whether
i or j is already contained inS). Clearly we can seti ≺ j as well asi � j and extend our ordering in the
correct way.

Lemma 3.8. Assume thatα is a critical partial assignment with|Supp(α)| < n− 2 and i1, i2, i3 are
distinct elements from[n] \Supp(α). Thenα can be extended to a total assignment for X so that all
axioms of the original principle GTn except the axiom¬xi1i2 ∨¬xi2i3 ∨¬xi3i1 are satisfied.

Proof. We need to extend the linear ordering on Supp(α) to some total (contradictory) ordering on[n].
For that we extendα to some arbitrary partial critical assignment on[n] \ {i1, i2, i3}, then seti1 � i2 �
i3 � i1 and makei1, i2, i3 greater than the rest of the vertices.

Lemma 3.9. For n sufficiently large, there exists a restrictionρ such that for every S and xi j , where S
is a subset of[n] of size at most n/100and xi j is a variable underlying GT′n,ρ , there exist three distinct
elements i1, i2, i3 ∈ [n]\S such thatρ(i1, i2, i3) = xi j .

Proof. Fix a setS, |S| ≤ εn, ε = 1/100, and fix somexi j . Chooseρ uniformly at random from all
functions mappingT to X. Then the probablity thatρ is bad for(S,xi j ) is

(
n(n−1)−1

n(n−1)

)(n−εn
3 )

≤
(

1− 1
n2

)(n−εn)3/12

=
(

1− 1
n2

)n3(1−ε)3/12

≤ e−n(1−ε)3/12 .
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Thus the probability that a givenρ is bad for all(S,xi j ) is at most

n(n−1) ·
(

n
εn

)
·e−n(1−ε)3/12≤ n2 ·eH(ε)n ·e−n(1−ε)3/12 = n2 ·e(H(ε)−(1−ε)3/12)n ≤ n2 ·e−.0248n .

The first inequality follows from the fact that
( n

εn

)
≤ eH(ε)n whereH(x) = −xlnx− (1− x) ln(1− x) is

the entropy function. The last inequality follows by choosingε = 1/100. The above quantity is clearly
less than 1 forn sufficiently large, and thus there exists aρ satisfying the conditions of the lemma.

Theorem 3.10. For n sufficiently large, there existsρ such that any regular resolution refutation of
GT′n,ρ has size greater than2n/200.

Proof. Fix a goodρ such that the above lemma holds. LetRbe a regular resolution refutation ofGT′n,ρ .
We will single out a particular set of distinct paths in the refutation, and then show that this set has
exponential size. These paths are defined by successive extensions; at each nodeν along these paths we
define an auxiliary critical assignmentαν that falsifies the clause inν .

Initially we start with a single path at the root andα is empty. Now assume that we have defined
l distinct paths up to the nodesν1, . . . ,νl . For each nodeνk with |Supp(ανk)| < n/100 we extend the
corresponding path in the following way:

• If a variablexi j is queried atνk and its value is already defined byα then we extend our path
according to this value;α does not change.

• If a variablexi j is queried atνk and eitheri or j does not belong to Supp(ανk) thenνk is abranching
nodeand we proceed in the following way. Assume that the answer 0 toxi j leads to the vertex
νk0 and 1 toνk1. We extend the existing path up to bothνk0 andνk1. For eachε ∈ {0,1} we
extendανk by Lemma3.7 to an arbitrary partial critical assignmentανkε

such thatανkε
(xi j ) = ε

and|Supp(ανkε
)| ≤ |Supp(ανk)|+2.

We use this strategy to extend paths till every path leads to a node with|Supp(α)| ≥ n/100. Since
the value of|Supp(α)| can increase at most by 2 in branching nodes, every path has at leastn/200
branching nodes, hence there are at least 2n/200 distinct paths. It is left to show that they do not intersect
each other.

For the sake of contradiction, assume that two distinct paths diverge in the nodeν1 and then merge
again in the nodeν2. Assume that the variablexi j is queried inν1. The key observation is thatxi j is
forgotten inν2 (because the clause inν2 cannot contain both literalsxi j and¬xi j ). By Lemma3.9 we
can choose three verticesi1, i2, i3 6∈ Supp(αν2) such thatρ(i1, i2, i3) = xi, j . Now let us set byLemma3.8
the rest of variables so that all axioms ofGT′n,ρ exceptA0 = ¬xi1i2 ∨¬xi2i3 ∨¬xi3i1 ∨xi j or A1 = ¬xi1i2 ∨
¬xi2i3 ∨¬xi3i1 ∨¬xi j are satisfied. We produce a total assignment that falsifies the clauseCν2 labelingν2

(because it is an extension ofαν2) and all violated clauses contain the forgottenxi j . The contradiction
with Lemma2.3proves the Theorem.

The same procedure can be applied to the set of clausesMGTn [5] that results fromGTn if we replace
all wide clauses with equivalent 3-CNF’s, thus yielding a bounded width separation between regular and
general resolution.
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We note that the above lower bound could have been made for an explicitρ, rather than a random
ρ. For example, we could defineρ(x1,x2,x3) by n(i1 + i2)+ i1 + i3 (mod

(n
2

)
). However, for simplicity

of presentation, we chose to use a randomρ. Note that the above argument actually shows thatGT′n,ρ is
hard for almost allρ.

4 Second example: the stone formulas

4.1 Definitions

Our second example will be a generalization of the implication graph formulas, first introduced by Raz
and McKenzie [21], and also used in subsequent papers [4, 6, 7]. Let G be a directed, acyclic graph, with
fan-in 2,n vertices, and a single sink vertex; we shall call a graph satisfying these conditions apointed
graph. We shall use the phrase “decorated graph” to refer to a pair(G,U), whereG= (V,E) is a pointed
graph, andU is a subset ofV not containing the sink.

The implication graph formulas encode the following contradictory statement: “All of the source
vertices and the vertices inU are colored red, the sink is colored blue, and if both the predecessors of a
vertex are red, so is the vertex itself.” In order to make the formulas difficult for regular resolution, we
express this statement somewhat indirectly, so that instead of speaking directly of colored vertices, we
introduce extra variables speaking of the placement of colored stones on the vertices.

The decorated graph(G,U) can be viewed as a board for a board game such as Othello. Additionally
we assume that we have a setSof m≥ n stones that are to be placed on the board, each of which can be
colored red or blue. (The reader might picture these stones as similar to the discs in the game of Othello,
being red on one side and blue on the other; thus they can be red or blue depending on which side is up.)

Our “stone formulas,”Stone(G,U,S), are defined as follows. Let(G,U) be a decorated graph, where
G = (V,E), |V| = n, andS is a set ofm≥ n stones. Let Sources(G) be the source vertices ofG. The
variables of the formula arePi, j , i ∈ (V \U) and j ∈ S, andRj , j ∈ S. The variablePi, j says “Vertexi
contains stonej,” or “Stone j is placed on vertexi,” while Rj says “Stonej is colored red,” and¬Rj says
“Stone j is colored blue.” We call a variablePi, j anedge variable, and a variableRj a stone variable.
For a vertexi ∈V, and a stonet ∈ S, let Di,t be 1 if i ∈U , otherwise,Di,t is the formula(Pi,t ∧Rt). The
clauses are as follows. For clarity, some clauses are expressed in implicational form.

(i)
∨
{Pi, j | j ∈ S}, i ∈ V \U . These clauses express the fact that every vertex contains some stone

(the vertices inU should be thought of as containing a particular red stone).

(ii) For all verticesk∈ Sources(G)\U and stonesj, (Pk, j → Rj).

(iii) For the sink vertexs and stonej, (Ps, j →¬Rj).

(iv) For all verticesi, j, k such that(i,k) and( j,k) are edges inG, wherek∈V \U , and for all stones
t,u,v, (Di,t ∧D j,u∧Pk,v → Rv). That is, if the stonest,u,v are placed on the verticesi, j,k, andt
andu are both red, then the stonev must also be red. Since this clause expresses an induction rule,
we shall refer to it as an “induction clause” associated with the vertexk.
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We writeStone(G,S) for the special case of the stone formulas whereU = /0. It is not hard to check
that the number of variables inStone(G,S) is (n+ 1)m, and the number of clauses in the formula is
O(m3n).

Lemma 4.1. For all m and all directed acyclic graphs G, Stone(G,S) has a resolution refutation of size
O(m3n).

Proof. For a vertexk with predecessorsi and j, we will say thatk is colored red if we have derived
all clauses of type (ii) fork. The refutation proceeds inductively from the source vertices to the sink,
deriving all clauses of type (ii) for everyk in the graph.

Let us assume that both predecessorsi and j of a vertexk are colored red. We first derive all of
the clauses(¬Pi,t ∨¬Pj,u∨¬Pk,v∨Rv) for t,u,v∈ S, by resolving clauses of type (ii) against appropriate
induction clauses. There arem3 such clauses, and each can be derived in two steps, so this part of the
proof takesO(m3) steps. Next, we derive all clauses of the form(¬Pj,u∨¬Pk,v∨Rv), by resolving the
previously obtained clauses against clauses of type (i). There arem2 such clauses, each of which takes
m steps to obtain, so this part of the proof also takesO(m3) steps. We then repeat this pattern to derive
all clauses of the form(¬Pkv∨Rv), in O(m2) steps, completing the induction step.

Finally, when the sinks is colored red, we can derive the empty clause fromRs and¬Rs in O(m)
steps. The entire refutation takesO(m3n) steps.

The refutation constructed in the preceding lemma is highly irregular since, at each induction step,
we resolve on all the stone variables, so that there are paths in the derivation in which a stone variable is
resolved on over and over again. The regularity restriction rules out a refutation of this type, and (as we
shall see below), any regular refutation has to be exponentially large.

4.2 Graph pebbling

In order to prove an exponential lower bound for the stone formulas, we will need to begin with a graph
G with high pebbling number. The next definition describes a slight generalization of the usual concept
of pebbling number.

Definition 4.2. Let (G,U) be a decorated graph. A configuration is a subset ofV. A pebblingof a
vertexv from U in G is a sequenceC0,C1, . . . ,C` of configurations, withC0 = /0 andv ∈C`, in which
each configurationCi+1 follows fromCi by one of the following rules:

1. Any vertexu∈U ∪Sources(G) can be added toCi , i. e.Ci+1 = Ci ∪{u}.

2. A vertexu can be added toCi to getCi+1 = Ci ∪{u}, if all immediate predecessors ofu are inCi .

3. Vertices can be removed, so thatCi+1 ⊂Ci .

Thecomplexityof a pebbling ofv from U is the maximal size of any configuration in the sequence. The
pebbling number Peb(G,U) of a decorated graph(G,U) is the minimal numbern for which there exists
a pebbling of the sink ofG from U with complexityn. Thepebbling number Peb(G) of a pointed graph
is the pebbling number of the decorated graph(G, /0).
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Pointed graphs requiring large pebbling number were constructed in a paper by Celoni, Paul and
Tarjan, based on a construction of Valiant.

Lemma 4.3 (Celoni, Paul and Tarjan [8]). There is a constantβ > 0 such that for all sufficiently large
n, there is a pointed graph G with n vertices that has pebbling number Peb(G)≥ βn/ logn.

The following definition is useful in describing the effect of restrictions on stone formulas.

Definition 4.4. For a pointed graphG = (V,E) andv∈V, let G[v] denote the induced subgraph ofG on
those verticesu from whichv is reachable, i. e. there is a directed path fromu to v.

The next lemma shows that if we add a new “free” vertex to a decorated graph with high pebbling
number, then we can always find a subgraph with high pebbling number.

Lemma 4.5. Let (G,U) be a decorated graph with pebbling number p+1, and i an vertex of G not in
U. Then either(G,U ∪{i}) or (G[i],U ∩G[i]) has pebbling number at least p.

Proof. Assume that both(G,U ∪{i}) and(G[i],U ∩G[i]) have pebbling number at mostp−1. Then
there is a legal pebblingC0, . . . ,Cl = {i} of G[i] fromU ∩G[i] and a legal pebblingD0, . . . ,Dm of G from
U ∪{i} each of complexity at mostp−1. Then

C0, . . . ,Cl ,D1∪{i}, . . . ,Dm∪{i}

is a legal pebbling of(G,U) from U of complexity at mostp, contradicting the assumption that(G,U)
has pebbling numberp+1.

The next definition picks out a type of vertex that plays a central role in the restrictions described in
the following subsection.

Definition 4.6. Let (G,U) be a decorated graph. A vertexv∈G is importantif there is a path fromv to
s not containing any vertex inU , otherwisev is unimportant.

Lemma 4.7. If Peb(G,U) = p, then there exist at least p−2 important vertices in G.

Proof. We prove the lemma by showing that if(G,U) is a decorated graph, then there is a legal pebbling
of the sink ofG from U in which at most two unimportant vertices occur in every configuration. Let
C0, . . . ,C` be a legal pebbling of the sinks fromU , andD0, . . . ,D` the sequence obtained by settingDi =
(Ci \ J), whereJ is the set of unimportant vertices in the pebbling. We argue by induction, proceeding
backwards fromD` to D0, that the resulting sequence of configurations (with no unimportant vertices)
can be converted into a legal pebbling ofs from U , by using at most two additional vertices fromU to
go from one configuration to another in the sequence.

By definition,s is important, so we only need to examine the case whereCi+1 is obtained fromCi

by an appropriate rule. Let us suppose thatCi+1 was obtained fromCi by the Rule 2 inDefinition 4.2,
and that the vertexu is important, but one or both of the predecessors ofu is unimportant. This can
only happen if each predecessor in question is inU . Hence, we can obtainDi+1 from Di by one or two
applications of Rule 1 inDefinition 4.2, followed by an application of Rule 2, followed by a deletion of
the one or two vertices added when applying Rule 1.
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4.3 Critical assignments for stone formulas

In the remainder of the paper, we concentrate on certain special assignments for the formulas
Stone(G,U,S). These assignments are determined by two items, a mapping from (some of the) ver-
tices to stones, and a coloring of some of the stones.

Definition 4.8. Let G = (V,E) be a pointed graph, andSa set of stones, where|S| ≥ |V|. A restriction
ρ = 〈µ,κ〉 for (G,S) is determined by

1. A bijective mapµ from a subset ofV to S;

2. A coloring κ assigning a subset ofS to the set{R,B} (i. e., we assign the colors red and blue to
some of the stones).

Theassignmentσ determined byρ is defined by setting:

• σ(Pi, j) = 1 if 〈i, j〉 ∈ µ, σ(Pi, j) = 0 if i or j are in Dom(µ)∪Ran(µ), but〈i, j〉 6∈ µ;

• σ(Rj) = 1 if κ( j) = R, σ(Rj) = 0 if κ( j) = B;

• If j is in the domain ofκ, but not in the range ofµ, thenPi, j = 0, for all i ∈V.

Thusρ is a restriction on the decorated graph, andσ is a corresponding restriction on the proposi-
tional formula. If |µ| = r and|κ| = s, then we say thatσ is a restriction withparameters rands. To
simplify notation, we shall identify a restriction with the assignment that it determines.

There are two special types of restrictions that are important in what follows. The first type is one in
which none of the stones placed on vertices are assigned colors, that is to say, Ran(µ)∩Dom(κ) = /0,
and furthermore, the parametersr ands are equal. In this case, we shall describeρ = 〈µ,κ〉 as anr-
restriction. The second special type of restriction is one in whichall of the stones placed on vertices are
assigned colors, that is, Ran(µ)⊆ Dom(κ). This second type of restriction we call aclamping.

Definition 4.9. Let (G,U) be a decorated graph,k a vertex inG, andχ a partial coloring ofG, that is,
χ is a map from a subset ofV to {R,B}. We say thatχ is ak-based coloringof (G,U) if the following
conditions hold:

1. If i ∈U , thenχ(i) = R;

2. There is a pathπ in G from k to the sink ofG so that the vertices in the path are exactly those to
which χ assigns the color blue;

3. If a vertexi is not inG[k]∪π, thenχ(i) = R.

We say thatχ is k-critical if it is a total coloring ofG.

Lemma 4.10. If (G,U) is a decorated graph and k an important vertex of G, then there is a k-critical
coloring of(G,U).
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Proof. By assumption, there is a path fromk to the sink not passing through any vertices inU . Color all
the vertices in this path blue, and all other vertices inG red. Sincek is the only blue vertex inG, all of
whose predecessors are colored red, this is ak-critical coloring of(G,U).

If χ is a coloring of a decorated graph(G,U), then a clampingρ = 〈µ,κ〉 is said to becompatible
with χ if Dom(χ) = Dom(µ), and for any vertex in Dom(χ) = Dom(µ), κ(µ(i)) = χ(i). If χ is a
k-based coloring, then we say thatρ is a k-basedclamping, and that it isk-critical if it is compatible
with a k-critical coloring. The reader can easily check that ifρ is ak-critical clamping of(G,U), then
it forces all the clauses inStone(G,U,S) to true, except for a single induction clause, which is forced to
false. In addition, we say that a restriction is compatible with ak-based coloringχ if it can be extended
to a clamping compatible withχ.

The next two lemmas, which are straightforward to prove, are used repeatedly in the rest of the
proof.

Lemma 4.11. Let (G,U) be a decorated graph, andχ a partial coloring of G= (V,E). In addition, let
S be a set of stones with|S\Dom(κ)| ≥ |V|, andρ = 〈µ,κ〉 a restriction for(G,S) so that Dom(µ) ⊆
Dom(χ), and κ(µ(i)) = χ(i), whenever i∈ Dom(µ)∩Dom(χ) and κ(µ(i)) is defined. Thenρ is
compatible withχ.

Proof. Extendµ to a bijectionµ ′ from Dom(χ) to S\Dom(κ), and then set the colors of stones in the
range ofµ ′ by settingκ ′(µ(i)) = χ(i) for all i ∈ Dom(χ) = Dom(µ ′). Thenρ ′ = 〈µ ′,κ ′〉 is a clamping
compatible withχ.

The next lemma follows readily from the definitions.

Lemma 4.12. If ρ = 〈µ,κ〉 is a k-based clamping of Stone(G,U,S) with parameters r,s, then

Stone(G,U,S)dρ = Stone(G[k],U ′,S′) ,

where U′ = G[k]∩ (U ∪Dom(µ)) and S′ = S\Dom(κ).

Lemma 4.13. Let ρ = 〈µ,κ〉 be an r-restriction for(G,S), where G has pebbling number N, and
|S| ≥ |V|. Then there is a vertex k∈G andρ ′ = 〈µ,κ ′〉 so that:

1. ρ ′ = 〈µ,κ ′〉 is a k-based clamping of(G,S), with κ ⊆ κ ′;

2. (G[k],U) has pebbling number at least N− r, where U= G[k]∩Dom(µ).

Proof. We constructρ ′ by first constructing an appropriatek-based coloringχ of G, with Dom(χ) =
Dom(µ), and then usingLemma4.11 to find the requiredk-based clamping. At each stage in the
construction, we are given a designated vertexk∈G, and ak-based coloringχ of G. Initially, no vertices
in G are assigned colors, and we choose the sink as the designated vertex. In successive stages, we
choose a new designated vertexk′ ∈G, and a new coloringχ ′, and we make these choices in such a way
as to maximize the pebbling number of the decorated graph(G[k′],G[k′]∩U(k′,χ ′)), whereU(k′,χ ′) is
the set of vertices inG[k′] mapped toRby χ ′.
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To be more precise, let us suppose that we haveµ(i) = t, and that the stonet has not yet been
assigned a color. LetU = U(k,χ). Compare the two values

p1 = Peb(G[k],U ∪{i}) and p2 = Peb(G[i],U ∩G[i]) .

If p1 ≥ p2, then setk′ = k and extendχ by settingχ ′(i) = Randχ ′(i′) = R for all i′ that are unimportant
in (G[k],U ∪{i}). If p1 < p2 then setk′ = i, choose a path inG from i to k, and extendχ to ani-based
coloring,χ ′, of (G,U ∩G[i]). LettingU ′ = U(k′,χ ′), by Lemma4.5, Peb(G[k′],U ′)≥ Peb(G[k],U)−1.

Let k andχ be the designated vertex andk-based coloring produced at the end of this process, that is,
when Dom(χ) = Dom(µ). By Lemma4.11, ρ is compatible withχ, so that there is a ak-based clamping
ρ ′ = 〈µ,κ ′〉 compatible withχ. By definition,U(k,χ) = G[k]∩Dom(µ), and since the construction has
r steps,(G[k],G[k]∩Dom(µ)) has pebbling number at leastN− r.

5 The lower bound for stone formulas

The general structure of the proof of the lower bound is similar to that of Beame and Pitassi’s [3]
simplified lower bound proof for the pigeonhole principle. That is, we will assume for the sake of
contradiction that we have a short (sub-exponential) refutation of a stone formula. We will first show that
we can apply a restriction to some (but not too many) of the variables such that the resulting refutation,
after the restriction, is still a refutation of a stone formula on a reduced set of variables, that contains
no complex clauses. Secondly, we argue separately that any regular resolution refutation of the formula
must contain a complex clause, and thus we reach a contradiction.

Definition 5.1. A clauseC is calledd-complexif one of the following holds:

1. C contains at leastd distinct stone variables, or

2. There is a matching of size at leastd from vertices to stones such thatC contains the negative edge
literals¬Pi, j for each pair(i, j) in the matching.

3. There is a subsetW of at leastd vertices, such that for alli ∈W there is a subsetPi of at leastd
stones, such that all literalsPi, j , i ∈W, j ∈ Pi are present inC.

There are three parameters in our lower bound,γ, δ , and ε. The lower bound is of the form
2δn/(logn)3

; the parameter associated with a complex clause isεn/ logn and the size of the restriction
is γn/ logn.

Lemma 5.2 (Restriction Lemma). Let γ, δ , ε be constants such that0 < γ,δ ,ε < 1 and3δ/ε2 ≤ γ ≤
ε/2. Let G= (V,E) be a pointed graph with|V|= n, and let R be a resolution refutation of Stone(G,S),
|S|= 3n, of size at most s= 2δn/(logn)3

. Then there exists an r-restrictionρ, r = γn/ logn, such that Rdρ
has no(εn/ logn)-complex clauses.

Proof. We will divide up the complex clauses into those of the first type and those of type two or three.
For those of type two or three, we will greedily choose a matching between vertices and stones that
forces all complex clauses of these types to true.
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The total number of pairs inV×S to choose from is 3n2; each complex clause of the third type can
be forced to true by choosing aPi, j from (εn/ logn)2 pairs; each complex clause of the second type can
be forced to true by choosing aPi, j from (ε(3n−1)n)/ logn≥ (εn/ logn)2 pairs. Thus, by averaging,
there exists aPi, j such that at leasts(εn/ logn)2/3n2 ≥ s(ε2/3(logn)2) complex clauses of the second
and third type are forced to true.

Hence to force all the complex clauses of these types to true we need to choose a matching of size

logs

log
(

1/
(
1− ε2

3(logn)2

)) ≤ δn/(logn)3

ε2/3(logn)2 ≤
3δn

ε2 logn
≤ γn

logn
.

Now for the clauses of the first type, notice that there are 3n− γn/ logn≥ 2n stones left that are
untouched by the matching chosen above, and any complex clause of the first type still contains(ε −
γ)n/ logn≥ εn/2logn literals corresponding to these stones, sinceγ ≤ ε/2.

Since the refutation has size at mosts, there are at mosts clauses of the first type, each containing
εn/2logn distinct stone variables that have not been set by the restriction already chosen. Each of these
is thus set to one byεn/2logn out of at least 4n choices of stone literals.

By averaging, there must be one stone literal that forcess(ε/8logn) of the complex clauses of type
one to true. Thus to force all complex clauses of this type to true we need to set

logs

log
(

1/
(
1− ε

8logn

)) ≤ δn/(logn)3

ε /8logn
≤ 8δn

ε(logn)2 ≤
γn

logn

stone literals.

Our last lemma shows the existence of a complex clause for any initial graph with sufficiently large
pebbling number. This is the only part of the proof in which the regularity restriction is used.

Lemma 5.3 (Complex Clause Lemma).Let (G,U) be a decorated graph with

Peb(G,U) = N = Ω(n/ logn) ,

where G has n vertices. Then for|S|= m= 2n, and n sufficiently large, any regular resolution refutation
of Stone(G,U,S) contains an(N/16)-complex clause.

Proof. Let R be a regular resolution refutation ofStone(G,U,S). We will follow a particular pathπ
partway through the refutation; this path will be determined by giving a strategy for answering queries.
The path is defined by successive extensions; at each stage in the definition, we define three auxiliary
objects. First, at each stage, we single out adesignated vertex kin G, second, we define ak-based
coloringχ of G, third, we define a restrictionρ compatible withχ. The answers given along the path at
each stage are compatible with the partial assignment,σ , determined byρ. At each stage, the designated
nodek and the coloringχ determine the subgraphG[k] of G, together with a subsetU of G[k], consisting
of the verticesi of G[k] with χ(i) = R.

Initially, we start the path at the root of the refutation. The designated vertex is the sinks of G,
χ(u) = R for u∈U , andχ(s) = B. Now assume that we have defined the path up to a nodeν , together
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with a designated vertexk, a k-based coloringχ, and a restrictionρ compatible withχ. In addition,
let (Gν ,Uν) be the decorated graph(G[k],U), whereU is the set of vertices inG[k] colored red byχ.
We want to extend the path by providing an appropriate answer to the variable queried at the nodeν ;
we need also to define a new designated vertexk′, a newk′-based coloringχ ′ and a new restrictionρ ′

compatible withχ ′. In each case, the answers to the queries will be given as an extension of the current
restrictionρ – unless the current restriction answers the query already, as can happen in the last case
below.

• If a stone variableRj is queried atν and it is not currently placed on a vertex, i. e. for no vertexi
do we haveρ(Pi, j) = 1, then extendρ by coloring j red or blue arbitrarily. Setk′ = k, χ ′ = χ.

• If a stone variableRj is queried atν , and it is already placed on a vertexi, i. e. ρ(Pi, j) = 1, then
we answer as follows:

– If i is colored byχ then answer accordingly. That is, ifχ(i) = R, then setρ(Rj) = 1, and if
χ(i) = B, then setρ(Rj) = 0. Then setk′ = k andχ ′ = χ.

– If i is not assigned a color byχ, but is not important with respect to(Gν ,Uν), then set
ρ(Rj) = 1. Extendχ by settingχ ′(i) = R, and setk′ = k.

– Otherwise, answer to maximize the pebbling number of the associated decorated graph. That
is, compare the two values

p1 = Peb(Gν ,Uν ∪{i}) and p2 = Peb(Gν [i],Uν ∩G[i]) .

If p1 ≥ p2, then setk′ = k, extendχ by settingχ ′(i) = R andχ ′(i′) = R for all i′ that are
unimportant in(Gν ,Uν ∪{i}), and setρ(Rj) = 1.

If p1 < p2 then setGξ = Gν [i], choose a path inGν from i to k, extendχ to an i-based
coloring ofG, and setρ(Rj) = 0.

• If an edgePi, j is queried atν , but the assignment,σ , defined byρ is not defined atPi, j , then set
ρ(Pi, j) = 1 Otherwise, answer consistent withσ , the assignment defined byρ. Setk′ = k and
χ ′ = χ.

Claim 5.4. There is a node on the path defined above where exactly N/2 stones are queried.

The path can only end in an initial clause of type (i) or an induction clause of type (iv). The former
case can only occur if all the stones have received colors, and thus all stones must have been queried.
In the latter case, note that at the root, we havePeb(Gν ,Uν) = N, by Lemma4.5 the pebbling number
decreases by at most 1 with each answer to a query, and only at nodes where a stone is queried. But when
we reach an induction clause, the pebbling number has decreased to 0. Therefore the path followed by
the above strategy will not finish until at leastN stones are asked about. Thus, there is some nodeξ on
the path where exactlyN/2 stones are queried.

The pair(Gξ ,Uξ ) associated withξ has pebbling number at leastN/2. This follows from the fact
that the pebbling number decreases by at most 1 at each stone query, and we have queried exactlyN/2
stones. ByLemma4.7, there are at leastN/2−2 important vertices in(Gξ ,Uξ ).
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Claim 5.5. The clause Cξ attached to the nodeξ must be N/16complex.

Let ρ = 〈µ,κ〉 be the restriction associated withξ . Let I be the set of important vertices in(Gξ ,Uξ ).
If at leastN/8 of the vertices inI are mapped byµ and the mapping is remembered, i. e., the corre-
sponding edge variables set to 1 byρ occur negated inCξ , thenCξ is anN/8-complex clause of type
two. Hence, in the remainder of the proof, we shall assume that there is a subsetI ′ ⊂ I of at leastN/8
vertices that are either unmapped byµ or are mapped byµ but all of the edge variables corresponding
to this part of the mapping are forgotten.

There are several cases. We will introduce some terminology to help with these cases. We partition
the set ofN/2 stones queried on the path toξ into the free stones,F , and theattachedstones,A. F
consists of those stones queried along the path toξ that are not in the range ofµ; A are those stones
queried on the path toξ that are in the range ofµ. There are two general cases to consider. The first
case (which is slightly easier) is when|F | ≥ N/4 and the second case is when|A| ≥ N/4.

Assume first that|F | ≥ N/4. We will show that the clauseCξ attached to the nodeξ must beN/16-
complex. The first subcase is when at leastN/8 of the stones inF occur inCξ . In this case,Cξ is an
N/8-complex clause of type one. If this subcase does not occur, then at leastN/8 of the stones inF are
forgotten at the nodeξ . Let F ′ ⊂ F be this set of at leastN/8 forgotten free stones. Now we claim that
for everyi ∈ I ′ andt ∈ F ′, the literalPi,t must occur inCξ , and thusCξ is anN/8-complex clause of type
three.

Suppose that the literalPi,t does not occur inCξ for somei ∈ I ′, t ∈ F ′. Then we can modify the
restrictionρ to ρ ′ by mappingi to t, and ifρ(i) = u, whereu 6= t, then we assign a color tou, if it was
not colored already. Becausei ∈ I ′, we know that for allj ¬Pi, j does not occur inCξ ), and thus it follows
that ρ ′(Cξ ) = 0. Sincei is important, there is ani-based coloring extending the coloringχ associated
with ξ , and thisi-based coloring can be extended to ani-critical coloring. Letσ be ani-critical clamping
compatible with this coloring, extending the restrictionρ ′, in whichσ(Pi,t) = 1 andσ(Cξ ) = 0. The only
initial clause falsified byσ is an induction clause associated withi, containing the variableRt . However,
by Corollary 2.4,Cξ was inferred from clauses none of which contain the forgotten variableRt . This is
a contradiction, so it follows thatCξ must contain the variablesPi,t .

We will now argue the second case, when|A| ≥N/4. LetB be the subset of vertices that are mapped
by ρ to stones inA. Clearly,|B|= |A|. The first subcase, 2a, is when at leastN/16 of the stones inA are
remembered. In this case,Cξ is anN/16-complex clause of type one.

The second subcase, 2b, is when for at leastN/16 of the verticesi in B, the mapping ofi into A
is remembered, i. e., the negative edge literal¬Pi, j where j = µ(i) occurs inCξ . In this case,Cξ is an
N/16-complex clause of type two.

The third subcase, 2c, is when for at leastN/16 of the verticesi in B, at leastN/2 zero-edges
containingi are remembered. That is, the edge variablePi, j occurs inCξ for at leastN/2 distinct j ’s. In
this case,Cξ is anN/16-complex clause of type three.

If none of the subcases 2a, 2b or 2c occur, then there are setsB′ ⊂ B andA′ ⊂ A each of size exactly
N/16 such thatρ defines a mapping fromB′ to A′ but the mapping is forgotten; the color of each stone
in A′ is forgotten, and for everyi ∈ B′, at mostN/2 zero-edges out ofi are remembered atξ . We claim
that for everyi ∈ I ′−B′ andt ∈ A′, the literalPi,t must occur inCξ .

Suppose that this is not the case and letPi,t be some literal that does not occur inCξ , wherei ∈ I ′,
t ∈ A′ and leti′ ∈ B′ be the vertex that is mapped tot by ρ. Then we will modify the restrictionρ to
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obtainρ ′ as follows. First,ρ ′ will map i to t. Secondly,ρ ′ will map i′ to some unqueried stonet ′ such
that the edge fromi′ to t ′ has not already been remembered to be 0. Further, the color associated witht ′

will be chosen to be the same as the color given tot by ρ; that is, the underlying coloring of the graph
will be the same forρ and forρ ′. It will still be the case thatρ ′(Cξ ) = 0 since we have not tampered with
any of the literals that are remembered (i. e., that occur inCξ .) Now as in Case 1, we will extendρ ′ to
an i-critical coloring,σ , extending the restrictionρ ′. Since the only initial clause falsified byσ contains
the variableRt , andRt is not remembered, we have reached a contradiction, and thusCξ must contain
all such variablesPi,t , showing that it is anN/16-complex clause of the third type. This completes the
proof of the complex clause lemma.

We are ready to state the main theorem of this section.

Theorem 5.6. Let G be a pointed graph with n vertices and pebbling number N= Ω(n/ logn). Then
any regular resolution refutation of Stone(G,S), where|S|= 3n requires size2Ω(n/(logn)3).

Proof. We start with a pointed graphG with n vertices and pebbling numberPeb(G) ≥ βn/ logn, in
accordance withLemma4.3. Setε = β/32, γ = ε/2 = β/32 andδ = ε3/6 = β 3/199608, so that we
have 3δ/ε2 ≤ γ ≤ ε/2. Now assume that there is a regular resolution refutationR of Stone(G,S), with
size at mostS= 2δn/(logn)3

. By Lemma5.2 (the Restriction Lemma), there is a restrictionρ of size
r = γn/ logn, such thatRdρ has no(εn/ logn)-complex clauses.

By Lemma4.13, there is a vertexk∈ G andρ ′ = 〈µ,κ ′〉 so thatρ ′ is ak-based clamping of(G,S),
with κ ⊆ κ ′, and(G[k],G[k]∩Dom(µ)) has pebbling number at leastN− r ≥ N/2. By Lemma5.3(the
Complex Clause Lemma), the refutationRdρ must contain a(βn/32logn)-complex clause, contradict-
ing the conclusion of the previous paragraph.

6 Open problems

The present paper gives a separation between regular and general resolution that seems close to opti-
mal. Nevertheless, there are still mysteries surrounding the exact effect of the regularity restriction. As
mentioned in the introduction, it was widely believed in the early years of research on the complexity
of resolution that optimal proofs are always regular. This belief would be justified, in a sense, if the
conjecture formulated below were proved to be true.

The most deeply investigated family of tautologies are those based on matchings in graphs, of which
the best known are the pigeonhole formulas. These examples are based on graphsG for which no
perfect matching exists; the corresponding contradictory CNF formulaF(G) asserts thatG has a perfect
matching. For example, the pigeonhole formulaPHPn can be understood as the formulaF(H), whereH
is the complete bipartite graphK(n+1,n). Other well-studied examples are the graph-based formulas
of Tseitin [23]. For both of these families of examples, the shortest known resolution refutations are
regular.

Conjecture 6.1. For contradictory formulas expressing matching principles in graphs, and also for the
graph-based examples of Tseitin, there is always a regular refutation of minimal size.
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A proof (or disproof) of this conjecture would shed light on the question of exactly when the reg-
ularity restriction helps in searching for short refutations. For the pigeonhole formulas, we can make
an even more specific conjecture, derived from Cook [9], who gives the size of the shortest known
resolution refutation ofPHPn – the proof in question is in fact regular.

Conjecture 6.2. Let PHPn be the set of clauses asserting that there is an injective mapping from a set of
sizen+1 into a set of sizen, expressed as in Haken’s paper [15]. Then the minimum size of a refutation
of PHPn is n(n+3)2n−2.

A second open problem concerns the relative complexity of DPLL proofs augmented with clause
learning. The most successful complete satisfiability solvers are based on performing a simple back-
tracking procedure, often called DPLL search, augmented with a form of caching known as clause
learning [19, 12, 20, 2]. It is known that clause learning is at least as efficient as regular resolution [1],
and it is an important open problem to resolve the complexity of clause learning with respect to unre-
stricted resolution. In particular, it is known that Resolution polynomially simulates clause learning, but
does clause learning also polynomially simulate Resolution? We believe that the answer is no, and we
conjecture that the two families of formulas presented in this paper require superpolynomial-size clause
learning proofs.
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